## Injection and extraction

- Injection methods
  - Single-turn hadron injection
  - Injection errors, filamentation and blow-up
  - Multi-turn hadron injection
  - Charge-exchange H- injection
  - Lepton injection
- Extraction methods
  - Single-turn (fast) extraction
  - Non-resonant multi-turn extraction
  - Resonant multi-turn (slow) extraction

Brennan Goddard CERN

#### Injection, extraction and transfer

- An accelerator has limited dynamic range.
- Chain of stages needed to reach high energy
- Periodic re-filling of storage rings, like LHC
- External experiments, like CNGS

Beam transfer (into, out of, and between machines) is necessary.

| LHC:Large Hadron ColliderSPS:Super Proton SynchrotronAD:Antiproton DeceleratorISOLDE:Isotope Separator Online DevicPSB:Proton Synchrotron BoosterPS:Proton SynchrotronLINAC:LINear AcceleratorLEIR:Low Energy RingCNGS:CERN Neutrino to Gran Sasso |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



## Introduction

- What do we mean by injection?
  - Inject a particle beam into a circular accelerator or accumulator ring, at the right time, while
    - minimizing the beam loss and
    - placing the newly injected particles onto the correct trajectory
    - with the correct phase-space parameters
- What do we mean by extraction?
  - Extract the particles at the appropriate time, while
    - minimizing beam loss and
    - placing the extracted particles onto the correct trajectory
    - with the correct phase-space parameters
- Both processes important for performance of accelerator complex

### **Special elements**

**Kicker magnet**: pulsed dipole magnet with very fast rise time (100ns – few ms)

**Septum magnet**: pulsed or DC dipole magnet with thin (2-20mm) septum between zero field and high field region

**Electrostatic septum**: DC electrostatic device with very thin (~0.1mm) septum between zero field and high field region

See talk by M.Barnes for full details of these elements

### Normalised phase space

• Transform real transverse coordinates *x*, *x*' by

$$\begin{bmatrix} \overline{\mathbf{X}} \\ \overline{\mathbf{X}'} \end{bmatrix} = \mathbf{N} \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \sqrt{\frac{1}{\beta_s}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_s & \beta_s \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$$
$$\overline{\mathbf{X}} = \sqrt{\frac{1}{\beta_s}} \cdot x$$
$$\overline{\mathbf{X}'} = \sqrt{\frac{1}{\beta_s}} \cdot \alpha_s x + \sqrt{\beta_s} x'$$

#### Normalised phase space



## Single-turn injection – same plane



- Septum deflects the beam onto the closed orbit at the centre of the kicker
- Kicker compensates for the remaining angle
- Septum and kicker either side of **D quad** to minimise kicker strength

# Single-turn injection

Normalised phase space

Large deflection by septum



# Single-turn injection

phase advance to kicker location



## Single-turn injection

Kicker deflection places beam on central orbit



## Single-turn injection – two plane



• Septum and kicker in different planes

• Allows use of iron septum – technically easier to build and more robust





For imperfect injection the beam oscillates around the central orbit. 2

For imperfect injection the beam oscillates around the central orbit. 3



For imperfect injection the beam oscillates around the central orbit. 4



- Non-linear effects (e.g. magnetic field multipoles ) present which introduce amplitude dependent effects into particle motion.
- Over many turns, a phase-space oscillation is transformed into an emittance increase.
- So any residual transverse oscillation will lead to an emittance blowup through filamentation
  - "Transverse damper" systems used to damp injection oscillations bunch position measured by a pick-up, which is linked to a kicker









### Steering (dipole) errors

- Static effects (e.g. from errors in alignment, field, calibration, ...) are dealt with by trajectory correction (steering).
- But there are also dynamic effects, from:
  - Power supply ripples
  - Temperature variations
  - Non-trapezoidal kicker waveforms
- These dynamic effects produce a variable injection offset which can vary from batch to batch, or even within a batch.
- Can quantify the effect on the beam emittance ("blow-up") in terms of the injection offset ∆a (in units of nominal beam sigma)

$$\varepsilon_{new} = \varepsilon_0 \left( 1 + \Delta a^2 / 2 \right)$$

• e.g. for  $\Delta a = 0.5 \sigma$ , we find  $\varepsilon_{new} = 1.125 \varepsilon_0$ 

#### **Injection errors**



$$\delta_{1} = \Delta \theta_{s} \sqrt{(\beta_{s}\beta_{1})} \sin (\mu_{1} - \mu_{s}) + \Delta \theta_{k} \sqrt{(\beta_{k}\beta_{1})} \sin (\mu_{1} - \mu_{k})$$

$$\approx \Delta \theta_{k} \sqrt{(\beta_{k}\beta_{1})}$$

$$\begin{split} \delta_2 &= \Delta \theta_s \ \sqrt{(\beta_s \beta_2)} \sin (\mu_2 - \mu_s) + \Delta \theta_k \ \sqrt{(\beta_k \beta_2)} \sin (\mu_2 - \mu_k) \\ &\thickapprox -\Delta \theta_s \ \sqrt{(\beta_s \beta_2)} \end{split}$$

## **Optical Mismatch at Injection**

- Can also have an emittance blow-up through optical mismatch
- Individual particles oscillate with conserved CS invariant:  $a_x = \gamma x^2 + 2\alpha xx' + \beta x'^2$



## Optical mismatch at injection

Injected beam of emittance ε, characterised by a different ellipse (α<sup>\*</sup>, β<sup>\*</sup>) to matched ellipse (α, β), generates (via filamentation) a large ellipse with original shape (α, β), but larger ε



## Multi-turn injection

- For hadrons the beam density at injection can be limited either by space charge effects or by the injector capacity
- If we cannot increase charge density, we can sometimes fill the horizontal phase space to increase overall injected intensity.
  - Condition that the acceptance of receiving machine is larger than the delivered beam emittance



- No kicker
- Bump amplitude decreases and inject a new bunch at each turn
- Phase-space "painting"



Turn 2









In reality filamentation occurs to produce a quasi-uniform beam

- Multiturn injection is essential to accumulate high intensity
- Disadvantages inherent in using an injection septum
  - Width of several mm reduces aperture
  - Beam losses from circulating beam hitting septum
  - Limits number of injected turns to 10-20
- Charge-exchange injection provides elegant alternative
  - Possible to "beat" Liouville's theorem, which says that emittance is conserved....
  - Convert H<sup>-</sup> to p<sup>+</sup> using a thin stripping foil, allowing injection <u>into the</u> <u>same phase space area</u>

Start of injection process



End of injection process



- Paint uniform transverse phase space density by modifying closed orbit bump and steering injected beam
- Foil thickness calculated to double-strip most ions (>99%)
  - 50 MeV 50 μg.cm-2
  - 800 MeV 200 μg.cm-2 (~1μm of C!)
- Carbon foils generally used very fragile
- Injection chicane reduced or switched off after injection, to avoid excessive foil heating and beam blow up

#### H- injection - painting



## Lepton injection

- Single-turn injection can be used as for hadrons; however, lepton motion is <u>strongly damped</u> (different with respect to proton or ion injection).
  - Synchrotron radiation
- Can use transverse or longitudinal damping:
  - Transverse Betatron accumulation
  - Longitudinal Synchrotron accumulation

## **Betatron lepton injection**



- Beam is injected with an angle with respect to the closed orbit
- Injected beam performs <u>damped</u> betatron oscillations about the closed orbit

## **Betatron lepton injection**

Injected bunch performs damped betatron oscillations



In LEP at 20 GeV, the damping time was about 6'000 turns (0.6 seconds)

## Synchrotron lepton injection

Inject an <u>off-momentum</u> beam



- Beam injected parallel to circulating beam, onto dispersion orbit of a particle having the same momentum offset ∆p/p.
- Injected beam makes damped synchrotron oscillations at Q<sub>s</sub> but does not perform betatron oscillations.

### **Injection - summary**

- Several different techniques
  - Single-turn injection for hadrons
    - Boxcar stacking: transfer between machines in accelerator chain
    - Angle / position errors  $\Rightarrow$  injection oscillations
    - Optics errors  $\Rightarrow$  betatron mismatch oscillations
    - Oscillations  $\Rightarrow$  filamentation  $\Rightarrow$  emittance increase
  - Multi-turn injection for hadrons
    - Phase space painting to increase intensity
    - H- injection allows injection into same phase space area
  - Lepton injection: take advantage of damping
    - Less concerned about injection precision and matching

## Extraction

- Different extraction techniques exist, depending on requirements
  - <u>Fast extraction</u>: ≤1 turn
  - <u>Non-resonant multi-turn extraction</u>: few turns
  - <u>Resonant multi-turn extraction</u>: many thousands of turns
  - <u>Resonant low-loss multi-turn extraction</u>: few turns
- Usually higher energy than injection  $\Rightarrow$  stronger elements ( $\int B.dI$ )
  - At high energies many kicker and septum modules may be required
  - To reduce kicker and septum strength, beam can be moved near to septum by closed orbit bump

### Fast single turn extraction

Whole beam kicked into septum gap and extracted.



- Kicker deflects the entire beam into the septum in a single turn
- Septum deflects the beam entire into the transfer line
- Most efficient (lowest deflection angles required) for  $\pi/2$  phase advance between kicker and septum

### Fast single turn extraction

- For transfer of beams between accelerators in an injector chain.
- For secondary particle production (e.g. neutrinos)
- Septum deflection may be in the other plane to the kicker deflection.
- Losses from transverse scraping or from particles in extraction gap



## Multi-turn extraction

- Some filling schemes require a beam to be injected in several turns to a larger machine...
- And very commonly Fixed Target physics experiments and medical accelerators often need a quasi-continuous flux of particles...
- Multi-turn extraction...
  - Non-Resonant multi-turn ejection (few turns) for filling e.g. PS to SPS at CERN for high intensity proton beams (>2.5 10<sup>13</sup> protons)
  - Resonant extraction (ms to hours) for experiments



- Fast bumper deflects the whole beam onto the septum
- Beam extracted in a few turns, with the machine tune rotating the beam
- Intrinsically a high-loss process thin septum essential

- Example system: CERN PS to SPS Fixed-Target 'continuous transfer'.
  - Accelerate beam in PS to 14 GeV/c
  - Empty PS machine (2.1  $\mu$ s long) in 5 turns into SPS
  - Do it again
  - Fill SPS machine (23 μs long)
  - Quasi-continuous beam in SPS (2 x 1  $\mu$ s gaps)
  - Total intensity per PS extraction  $\approx 3 \times 10^{13}$  p+
  - Total intensity in SPS  $\approx 5 \times 10^{13}$  p+





- CERN PS to SPS: 5-turn continuous transfer
  - Losses impose thin (ES) septum... second septum needed
  - Still about 15 % of beam lost in PS-SPS CT
  - Difficult to get equal intensities per turn
  - Different trajectories for each turn
  - Different emittances for each turn







- Slow bumpers move the beam near the septum
- Tune adjusted close to n<sup>th</sup> order betatron resonance
- Multipole magnets excited to define stable area in phase space, size depends on  $\Delta Q = Q Q_r$

- 3<sup>rd</sup> order resonances.
  - Sextupole fields distort the circular normalised phase space particle trajectories.
  - Stable area defined, delimited by unstable Fixed Points.



- Sextupoles families arranged to produce suitable phase space orientation of the stable triangle at thin electrostatic septum
- Stable area can be reduced by increasing the sextupole strength, or (easier) by approaching machine tune Q<sub>h</sub> to resonant 1/3 integer tune
- Reducing ∆Q with main machine quadrupoles can be augmented with a 'servo' quadrupole, which can modulate ∆Q in a servo loop, acting on a measurement of the spill intensity



- Particles distributed on emittance contours
- $\Delta Q$  large no phase space distortion



Dedicated sextupole magnets produce a triangular stable area in phase space
ΔQ decreasing – phase space distortion for largest amplitudes



AQ small enough that largest amplitude particles are close to the separatrices
Fixed points locations discernable at extremities of phase space triangle



•  $\Delta Q$  now small enough that largest amplitude particles are unstable

• Unstable particles follow separatrix branches as they increase in amplitude



• Stable phase area shrinks as  $\Delta Q$  gets smaller



• As  $\Delta Q$  approaches zero, the particles with very small amplitude are extracted.

Example – SPS slow extraction at 450 GeV/c.  $\sim$ 3 x 10<sup>13</sup> p+ extracted in a 2-4 second long spill (~200,000 turns)



Intensity vs time: ~10<sup>8</sup> p+ extracted per turn

### **Resonant extraction separatrices**



Amplitude growth for 2<sup>nd</sup> order resonance much faster than 3<sup>rd</sup> – shorter spill
Used where intense pulses are required on target – e.g. neutrino production

## Resonant low-loss multi-turn extraction

- Adiabatic capture of beam in stable "islands"
  - Use non-linear fields (sextupoles and octupoles) to create islands of stability in phase space
  - A slow (adiabatic) tune variation to cross a resonance and to drive particles into the islands (capture)
  - Variation of field strengths to separate the islands in phase space
- Several big advantages
  - Losses reduced virtually to zero (no particles at the septum)
  - Phase space matching improved with respect to existing nonresonant multi-turn extraction - all 'beamlets' have same emittance and optical parameters

## **Resonant low-loss multi-turn extraction**



- a. Unperturbed beam
- b. Increasing non-linear fields
- c. Beam captured in stable islands
- d. Islands separated and beam bumped across septum – extracted in 5 turns



Courtesy M.Giavannozzi

### Extraction - summary

- Several different techniques:
  - Single-turn fast extraction:
    - for Boxcar stacking (transfer between machines in accelerator chain), beam abort
  - Non-resonant multi-turn extraction
    - slice beam into equal parts for transfer between machine over a few turns.
  - Resonant multi-turn extraction
    - create stable area in phase space  $\Rightarrow$  slowly drive particles into resonance  $\Rightarrow$  long spill over many thousand turns.
  - Resonant low-loss multi-turn extraction
    - create stable islands in phase space: slice off over a few turns.

## Acknowledgements

- Thanks to Mike Plum for the use of slides from his USPAS course
- Thanks to Rende Steerenberg, for many ideas from his AXEL lectures