Introduction to Accelerators

D. Brandt, CERN

CAS-Divonne 2009

Introduction to Accelerators

D. Brandt 1

Why this Introduction?

- During this school, you will learn about beam dynamics in a rigorous way...
- but some of you are completely new to the field of accelerator physics.
- It seemed therefore justified to start with the introduction of a few very basic concepts, which will be used throughout the course.

This is a completely intuitive approach (no mathematics) aimed at highlighting the physical concepts, without any attempt to achieve any scientific derivation.

Units: the electronvolt (eV)

The **electronvolt** (**eV**) is the energy gained by an electron travelling, in vacuum, between two points with a voltage difference of 1 Volt. $1 \text{ eV} = 1.602 \text{ } 10^{-19} \text{ Joule}$

We also frequently use the electronvolt to express masses from $E=mc^2$: $1 eV/c^2 = 1.783 \ 10^{-36} kg$

Beam Dynamics (1)

In order to describe the motion of the particles, each particle is characterised by:

- Its azimuthal position along the machine: s
- Its Energy: E
- Its horizontal position: x
- Its horizontal slope: x'
- Its vertical position: y
- Its vertical slope: y'

i.e. a sixth dimensional vector (s, E, x, x', y, y')

Beam Dynamics (2)

- In an accelerator designed to operate at the energy E_{nom}, all particles having (s, E_{nom}, 0, 0, 0, 0) will happily fly through the center of the vacuum chamber without any problem. These are "ideal particles".
- The difficulties start when:
 - one introduces dipole magnets
 - > the energy $E \neq E_{nom}$ or $(p-p_{nom}/p_{nom}) = \Delta p/p_{nom} \neq 0$
 - > either of x, x', y, $y' \neq 0$

With more than 10¹⁰ particles per bunch, most of them will not be ideal particles, i.e. they are going to be lost !

Purpose of this lecture: how can we keep the particles in the machine ?

What is a Particle Accelerator?

> a machine to accelerate some particles ! How is it done ?

> Many different possibilities, but rather easy from the general principle:

CAS-Divonne 2009

Introduction to Accelerators

D. Brandt 8

CAS-Divonne 2009

Colliders (E_{c.m.}=2E)

Colliders:

electron – positron proton - antiproton

Colliders with the same type of particles (e.g. p-p) require two separate chambers. The beam are brought into a common chamber around the interaction regions

Ex: LHC 8 possible interaction regions 4 experiments collecting data

Circular machines: Dipoles

Relation also holds for relativistic case provided the classical momentum mv is replaced by the relativistic momentum p

CAS-Divonne 2009

Dipoles (1):

Ideal circular machine:

- Neglecting radiation losses in the dipoles
- Neglecting gravitation

ideal_particle would happily circulate on axis in the machine for ever!

Unfortunately: real life is different!

Gravitation: $\Delta y = 20$ mm in 64 msec!	
Alignment of the machine	Limited physical aperture
Ground motion	Field imperfections
Energy error of particles and/or $(x, x')_{inj} \neq (x, x')_{nominal}$	
Error in magnet strength (power supplies and calibration)	

Focusing with quadrupoles

$$F_x = -g.x$$

$$F_y = g.y$$

Force increases linearly with displacement.

Unfortunately, effect is **opposite** in the two planes (H and V).

Remember: this quadrupole is <u>focusing</u> in the horizontal plane but <u>defocusing</u> in the vertical plane!

Quadrupoles:

A quadrupole provides the required effect in one plane...

but the opposite effect in the other plane!

Is it really interesting ?

Alternating gradient focusing

Basic new idea:

Alternate QF and QD

valid for one plane only (H or V) !

QF QD QF QD QF QD QF QD QF QD

Alternating gradient focusing:

It can be shown that a section composed of alternating focusing and defocusing elements has a net focusing effect, provided the quadrupoles are correctly placed.

Particles for which x, x', y, y' \neq 0 thus oscillate around the ideal particle ...

> but the trajectories remain inside the vacuum chamber !

Why net focusing effect?

Purely intuitively:

Rigorous treatment rather straightforward !

The concept of the « FODO cell »

Real circular machines

The accelerator is composed of a **periodic** repetition of **cells**:

> The phase advance per cell μ can be modified, in each plane, by varying the strength of the quadrupoles.

The ideal particle will follow a particular trajectory, which closes on itself after one revolution: the closed orbit.

> The real particles will perform oscillations around the closed orbit.

➢ The number of oscillations for a <u>complete revolution</u> is called the Tune Q of the machine (Qx and Qy).

CAS-Divonne 2009

Regular periodic lattice: The Arc

The beta function $\beta(s)$

The β -function is the envelope around all the trajectories of the particles circulating in the machine.

The β -function has a minimum at the QD and a maximum at the QF, ensuring the net focusing effect of the lattice.

It is a **periodic function** (repetition of cells). The oscillations of the particles are called betatron motion or **betatron oscillations**.

Phase space at some position (s)

Select the particle for which 65% of the particles (1 σ) have a smaller betatron motion and plot its position vs. its phase (x vs. x') at some location in the machine for many turns.

 $\geq \varepsilon$ Is the emittance of the beam [mm mrad]

- $\succ \epsilon$ is a property of the beam (quality)
- > Measure of how much particle depart from ideal trajectory.

 $> \beta$ is a property of the machine (quadrupoles).

Beam size [m] $\sigma(s) = (\epsilon \cdot \beta(s))^{1/2}$

Emittance conservation QF QF OD

The shape of the ellipse varies along the machine, but its area (the emittance ε) remains constant for a given energy.

CAS-Divonne 2009

Introduction to Accelerators

D. Brandt 29

Recapitulation 1

- The <u>fraction</u> of the oscillation performed in a periodic cell is called the <u>phase advance μ per cell</u> (x or y).
- The total number of oscillations over <u>one full turn of the machine</u> is called the <u>betatron tune Q</u> (x or y).
- The <u>envelope</u> of the betatron oscillations is characterised by the <u>beta function $\beta(s)$ </u>. This is a <u>property of the quadrupole settings</u>.
- The quality of the (injected) beam is characterised by the <u>emittance</u> <u>a</u>. This is a <u>property of the beam</u> and is <u>invariant</u> around the machine.
- > The r.m.s. beam size (measurable quantity) is $\sigma = (\beta \cdot \epsilon)^{1/2}$.

Off momentum particles:

 These are "non-ideal" particles, in the sense that they do not have the right energy, i.e. all particles with △p/p ≠ 0

What happens to these particles when traversing the magnets ?

equilibrium with the restoring force of the quadrupoles

CAS-Divonne 2009

Introduction to Accelerators

∆p/p<0

-25

∆p/p=0

Particles with different momenta would have a different betatron tune $Q=f(\Delta p/p)!$

The chromaticity Q'

Particles with different momenta ($\Delta p/p$) would thus have different tunes Q. So what ?

unfortunately

The tune dependence on momentum is of fundamental importance for the stability of the machine. It is described by the chromaticity of the machine Q':

$\mathbf{Q}' = \Delta \mathbf{Q} / (\Delta \mathbf{p} / \mathbf{p})$

The chromaticity has to be carefully **controlled and corrected** for stability reasons. This is achieved by means of **sextupoles**.

CAS-Divonne 2009

The sextupoles (SF and SD)

• $\Delta x' \propto x^2$

- A SF sextupole basically « adds » focusing for the particles with ∆p/p > 0, and « reduces » it for ∆p/p < 0.
- The chromaticity is corrected by adding a sextupole after each quadrupole of the FODO lattice.

Chromaticity correction

The undesired effect of sextupoles on particles with the **nominal energy** can be avoided by grouping the sextupoles into « families ». Nr. of families: N = (k * 180 °)/μ = Integer e.g. 180 °/ 90 ° = 2

Recapitulation 2

- For off momentum particles (∆p/p ≠ 0), the magnets induce other important effects, namely:
- The dispersion (dipoles)
- The chromaticity (quadrupoles)

Longitudinal plane

So far, we considered only the motion in the transverse planes from an intuitive point of view. The corresponding rigorous treatment will be given in the lectures on "<u>Transverse Beam</u> <u>Dynamics</u>".

The lectures on "Longitudinal Beam Dynamics" will explain the details of the corresponding longitudinal motion as well as the RF acceleration of the particles.

Natural chromaticity...

• Take a particle and slightly increase its momentum: $\Delta p/p > 0 \quad \Delta Q < 0 \quad Q' < 0$

• Take a particle and slightly decrease its momentum: $\Delta p/p < 0 \quad \Delta Q > 0 \quad Q' < 0$

Natural Q' is always negative !

Tunes of the machine

Why do we have to control the tunes $(Q_x \text{ and } Q_y)$ so accurately?

Because there are some (many !) forbidden values!

Forbidden values for Q

> An error in a dipole gives a kick which has always the same sign!

CAS-Divonne 2009

Forbidden values for Q

> An error in a quadrupole gives a kick whose sign depends on x

Similar conclusions for 1/3, 1/4, 1/5, ...

Tune diagram

an illustration for a lepton machine:

Tune values (Qx and/or Qy) which are forbidden in order to avoid resonances

The lowest the order of the resonance, the most dangerous it is.

Tune diagram for protons

The particles have a certain tune spread, the bunch thus represents a small **area** rather than a **point** in the tune diagram.

That's it for the Introduction...

Thank you very much for your attention !!!