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Lectures 1 and 2 summary

In Lecture 1, we:
• discussed the effect of synchrotron radiation on the (linear) motion of 

particles in storage rings;

• derived expressions for the damping times of the vertical, horizontal 
and longitudinal emittances;

• discussed the effects of quantum excitation, and derive expressions for 
the equilibrium horizontal and longitudinal beam emittances in an 
electron storage ring in terms of the synchrotron radiation integrals.

In Lecture 2, we:

• derived expressions for the natural emittance in different types of 
lattice (FODO, DBA, multi-bend achromats, TME):

• considered how the natural emittance in an achromat could be reduced 
by "detuning" from the achromat conditions.
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Lecture 3 objectives: emittance computation and tuning

In this lecture, we shall:
• learn how to compute the emittance in a lattice with coupling;
• discuss different sources of vertical emittance, and some of the issues 

involved in tuning a lattice for ultra-low vertical emittance.
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Emittance computation in practice

The formulae for the natural emittance using the synchrotron radiation 
integrals are useful for ideal (error-free) lattices without betatron coupling.

When coupling is present, things get more cumbersome, though the same 
principles still apply.  Usually, we turn to more numerical methods for 
computing the emittance in practical cases.

There are at least two common methods used for computing the equilibrium 
emittances in coupled lattices:

– Chao's method
• A. Chao, "Evaluation of beam distribution parameters in an electron 

storage ring," Journal of Applied Physics, 50, 595-598 (1979).
– The "envelope" method

• e.g. K. Ohmi, K. Hirata, K. Oide, "From the beam-envelope matrix to 
synchrotron radiation integrals," Phys. Rev. E 49, 751-765 (1994).

In this lecture, we shall discuss only the envelope method.
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Back to basics: the sigma matrix and the beam emittances

The sigma matrix is defined as the matrix of second-order moments of the 
beam distribution:

This can be conveniently written as:

where the brackets 〈 〉 indicate an average over all particles in the bunch.

In the absence of coupling, the sigma matrix will be block diagonal.  We are 
interested in the more general case, where coupling is present.
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Back to basics: the sigma matrix and the beam emittances

The emittances and the lattice functions can be calculated from the sigma 
matrix, and vice-versa.

Consider the (simpler) case of one degree of freedom.  The sigma matrix in 
this case is:

Note that given a sigma matrix, we can compute the emittance as follows.

First, define the matrix S:

Then:

the eigenvalues of Σ·S are ±iεx

The proof is left as an exercise for the student!

x
xx

xx

xx

x

pxp
xpx

ε
γα
αβ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=Σ 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
01
10

S



7 Lecture 3: Emittance Computation and TuningLow Emittance Machines

Back to basics: the sigma matrix and the beam emittances

Now, we can show that, under certain assumptions, the emittance is 
conserved as a bunch is transported along a beam line as follows.

The linear transformation in phase space coordinates of a particle in the 
bunch between two points in the beam line can be represented by a matrix M:

If (for the moment) we neglect radiation and certain other effects, and 
consider only the Lorentz force on the particles from the external 
electromagnetic fields, then the transport is symplectic.

Physically, this means that the phase-space volume of the bunch is 
conserved as the bunch moves along the beam line.

Mathematically, this means that M is a symplectic matrix, i.e. M satisfies:
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Back to basics: the sigma matrix and the beam emittances

Now consider how the sigma matrix transforms.  Since it is written as the 
product of the phase-space coordinates averaged over the bunch, we have:

Since S is a constant matrix, we can write:

Then, using the fact that M is symplectic, we have:

But the eigenvalues of Σ·S are conserved under a transformation of this 
type.  Therefore, since the eigenvalues are just the bunch emittance, the 
eigenvalues are conserved under linear, symplectic transport.
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Back to basics: the sigma matrix and the beam emittances

All the above immediately generalises to three degrees of freedom.

If we define the matrix S in three degrees of freedom by:

In three degrees of freedom, the six eigenvalues of Σ·S are just:

and these quantities are conserved under linear symplectic transport.

Even if, as is generally the case, the sigma matrix is not block-diagonal (i.e. 
there is coupling present), we can still find three conserved emittances using 
this method, without any modification.
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The matched distribution in a storage ring

If M is a matrix that represents the linear single-turn transformation at some point in a 
storage ring, then an invariant or "matched" distribution is one that satisfies:

This is not sufficient to determine the beam emittances – though this condition will 
determine the lattice functions (which can be obtained from the eigenvectors of Σ·S).

In other words, the matched distribution condition determines the shape of the bunch, 
but not the size of the bunch.  This makes sense: after all, in a proton storage ring, we 
can have a matched beam with any emittance.

However, in an electron storage ring, we know that radiation effects will damp the 
emittances to some equilibrium values.

How can we apply the concept of a matched distribution to find the equilibrium 
emittance values?

Σ=⋅Σ⋅Σ TMMa

M
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The matched distribution in a storage ring

In an electron storage ring, we must make two modifications to the single-
turn transformation to account for radiation effects:

1. The matrix M will no longer be symplectic: this accounts for 
radiation damping.

2. As well as first-order terms in the transformation (represented by 
the matrix M), there will be zeroth-order terms: these will turn out to 
correspond to the quantum excitation.

The condition for a matched distribution should then be written:

where M and D are constant (non-symplectic) matrices that represent the 
first-order and zeroth-order terms in the single-turn transformation, 
respectively.

This equation is sufficient to determine the sigma matrix uniquely – in other 
words, using just this equation (with known M and D) we can find the bunch 
emittances and the matched lattice functions.

DMM +⋅Σ⋅=Σ T
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The envelope method

The envelope method for finding the equilibrium emittances in a storage ring 
consists of three steps:

1. Find the first-order terms M and zeroth-order terms D in the single-
turn transformation:

2. Use the matching condition:

to determine the sigma matrix.

3. Find the equilibrium emittances from the eigenvalues of Σ·S

Note: strictly speaking, since M is not symplectic, the emittances are not conserved 
as the bunch moves around the ring.  Therefore, we may expect to find a different 
emittance at each point around the ring.  However, if radiation effects are fairly small, 
the variations in the emittances will be small.

DMM +⋅Σ⋅Σ Ta

DMM +⋅Σ⋅=Σ T
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The envelope method: finding the transformation matrices M and D

As an illustration of the transformation matrices M and D, we shall consider 
a thin "slice" of a dipole.

The details of the calculation are given in Appendix A; in the main part of the 
lecture, we just indicate the principles, and state the results.

The thin slice of dipole is an important case:
– in most storage rings, radiation effects are only significant in dipoles;
– "complete" dipoles can be constructed by concatenating the maps for 

a number of slices.

Once we have the map for a thin slice of a dipole, we simply need to 
concatenate the maps for all the elements in the ring, to construct the map 
for a complete turn starting at any given point.
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The transformation matrices M and D in a thin slice of a dipole

Recall (from Lecture 1) the transformation of the phase space variables in 
the emission of radiation carrying momentum dp is:

where P0 is the reference momentum.  In general, dp is a function of the 
coordinates.

To find the transformation matrices M and D, we find an explicit expression 
for dp/P0, and then write down the above transformations to first order…
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The transformation matrices M and D in a thin slice of a dipole

For a thin slice of dipole, of length ds, the radiation effects can be 
represented by the matrices (see Appendix A):
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Concatenating the transformations

To construct the full transformation for a dipole (or for an entire lattice) we 
need to concatenate the maps.

It is straightforward to do this numerically using a computer.  We only need 
to be careful about how we handle the D matrices.

For example, given the sigma matrix at a location s0, we find the sigma 
matrix at a location s1 = s0 + ds from:

Then the sigma matrix at s2 is given by:

Hence:
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Concatenating the transformations

Continuing the process, we find we can write:

Using a computer, it's actually not too difficult to concatenate the maps.  In a 
dipole, we have to remember to "interleave" the radiation maps with the 
usual symplectic transport map for thin slice of dipole.
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Solving the matching condition

Having obtained the maps M and D for an entire ring, we now need to solve 
the equation:

to find the sigma matrix for the equilibrium distribution.

To solve this equation for the sigma matrix, we make use of the 
eigenvectors U and the (diagonal matrix of) eigenvalues Λ of M:

Defining     and     by:

the solution for the sigma matrix can be written:
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Comments on the envelope method: (1) What do we learn?

Vertical emittance can be generated by:
– Coupling between the vertical and longitudinal planes in regions where 

radiation is emitted; i.e. by vertical dispersion in dipoles.
– Coupling between the vertical and horizontal planes in regions where radiation 

is emitted; i.e. by betatron coupling in dipoles.

Here, we need to be very careful in how we use the word "coupling".  In this 
context, coupling means the presence of non-zero off-block-diagonal 
components in the single-turn matrix, M.

Full characterisation of the coupling requires complete specification of all 
these off-block-diagonal components.

It is quite possible to have coupling in a storage ring, and not generate any 
vertical emittance…
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Comments on the envelope method: (2) Applications

Numerical computational procedures (such as the envelope method) for 
finding the equilibrium beam distribution in a storage ring are important 
because they provide a means to calculate the equilibrium emittances in 
complex, coupled lattices.

Note that a variety of non-symplectic effects (including, for example, 
intrabeam scattering) can be included in the computation: not just 
synchrotron radiation.

Often, coupling comes from magnet alignment errors (as we shall discuss 
next), which are not completely known in an operating machine.

However, at the design stage, it is important to characterise the sensitivity of 
a lattice to magnet alignment errors, particularly regarding the vertical 
emittance.

Having a means to compute the beam emittances in a storage ring with 
coupling errors present allows us to simulate the effects of various types and 
sizes of alignment error – and (we hope) to optimise the lattice design to 
minimise the sensitivity to likely errors.
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Example: εy sensitivity to sextupole alignment in the ILC damping rings

To achieve the machine 
luminosity goals, the 
damping rings of the 
International Linear Collider 
will need to produce beams 
with 2 pm vertical emittance.

2 pm is more than a factor of 
two smaller than the smallest 
vertical emittance so far 
demonstrated in an electron 
storage ring.

Sensitivity to coupling errors 
must be well-understood, 
and effective techniques for 
correcting or compensating 
for coupling errors will have 
to be applied.
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Case study: the KEK-ATF prototype linear collider damping ring

The main components are a 1.28 GeV S-band linac, a 1.28 GeV storage ring, and an 
extraction line.  The extraction line is presently being extended (ATF2) to provide a 
test facility for linear collider beam delivery systems.

Vertical emittances in light sources are typically of order several 10's of pm, 
corresponding (usually) to 1% of the horizontal emittance.

The KEK-ATF presently holds the record for the smallest vertical emittance 
achieved in an accelerator: 4.5 pm.
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(Clockwise) ATF injector; damping ring; laser wire; extraction line
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Achieving a low emittance starts with achieving good magnet alignment

Vertical alignment of the magnets is critical:
– Vertical alignment errors on the quadrupoles generates vertical orbit 

distortion and vertical dispersion.
– Vertical orbit offset in the sextupoles (by orbit distortion or sextupole 

alignment errors) generates vertical dispersion and betatron coupling.

Rotational (tilt) alignment of the quadrupoles is also critical, to avoid skew 
quadrupole components that will generate coupling.
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Tuning for low emittance proceeds in stages 

Simulations of emittance tuning in the 
ATF damping ring.

Top: after correction of vertical closed orbit 
distortion.
Middle: after further correction (combined 
vertical closed orbit and vertical 
dispersion).
Bottom: after correction of betatron 
coupling.

Each plot shows a histogram of 500 cases 
with random errors:

Additional magnet offset 30 μm

Magnet rotation 300 μrad

BPM offset 300 μm

BPM rotation 20 mrad

K.Kubo, "Simulation Study of Low Emittance Tuning of 
the Accelerator Test Facility Damping Ring at KEK," 
Phys.Rev.ST-AB 6, 092801 (2003).

Errors in the 
diagnostics 
dominate over 
errors in the 
magnets!
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Understanding the BPM offsets is essential for low emittance tuning

Beam-based alignment in the KEK-ATF damping ring:
Red line: vertical BPM reading as a function of vertical bump amplitude.
Blue line: beam-quad vertical offset as a function of bump amplitude.

The beam-quad offset at each bump amplitude is determined by changing the
strength of the quadrupole, and measuring the resulting change in the closed orbit.

In this case, when the beam is centered in the quadrupole, the adjacent BPM reads a 
beam position of -650 μm.
M.D.Woodley et al, "Beam Based Alignment at the KEK ATF Damping Ring," Proc. EPAC 2004.
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Steering to quadrupole centres helps reduce vertical dispersion in the ATF

If the vertical dispersion is generated by random errors, the contribution of the vertical 
dispersion to the vertical emittance may be estimated from (see Appendix B):

With rms vertical dispersion 1.7 mm, the contribution of the vertical dispersion to the 
vertical emittance in the ATF is of order 0.5 pm, which is much less than 4.5 pm…
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Correction of betatron coupling

In the KEK-ATF, after correcting the vertical closed orbit distortion and 
vertical dispersion, most of the remaining emittance is generated by betatron 
coupling.

Correction of betatron coupling is achieved using skew quadrupoles 
distributed around the ring.  There are various techniques used to determine 
the optimum settings for the skew quadrupoles.

Generally, one measures the changes in the vertical closed orbit in 
response to changes in horizontal steering magnet strengths, and vice-
versa.  Analysis of the data yields settings for the skew quadrupoles to 
minimise the cross-plane orbit response.

The effectiveness of this technique depends on rotational alignment 
accuracy of the steering magnets and the BPMs.  If this alignment is not 
precise, one can "measure" cross-plane orbit response even when no 
coupling is in fact present.
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Measurement of picometer emittances

Beams with vertical emittance of a few picometers will generally have vertical beam 
size of a few microns.

This presents a challenge for the instrumentation used to measure beam sizes and 
emittances.  However, there are various types of instrument, such as X-ray 
synchrotron radiation monitors, that provide the necessary resolution.

At the KEK-ATF, a laser wire is used to measure the vertical beam size.
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ATF beam shows emittance growth from IBS with εy ~ 5 pm
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Summary 1: computing equilibrium emittances

In a lattice with coupling errors:
– the analytical formulae using the synchrotron radiation integrals are 

not the most useful for calculating the equilibrium emittances;
– various methods do exist for computing the equilibrium beam 

distributions, from which the emittances can be found.

The envelope method is based on computing the zeroth-order (D) and first-
order (M) terms in the single-turn transfer map (including the effects of 
radiation, and – possibly – other non-symplectic processes), and then 
finding the matched distribution:

The emittances are the eigenvalues of Σ·S.

DMM +⋅Σ⋅=Σ T
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Summary 2: ultra-low vertical emittance in electron storage rings 

Vertical emittance in synchrotron storage rings is generated by coupling with 
the longitudinal motion (vertical dispersion) and horizontal motion (betatron 
coupling).

Generally, synchrotron light sources operate with vertical emittances of 
some 10's of picometers, corresponding to ~ 1% of the horizontal emittance.

Some applications – notably linear colliders – demand much smaller vertical 
emittances, of order 2 pm.  Issues involved in achieving such emittances 
include:

– sensitivity of the lattice to a range of coupling errors (including vertical 
alignment of sextupoles, and rotational alignment of quadrupoles);

– accuracy and precision of magnet alignment;
– performance of instrumentation, particularly BPMs and beam-size monitors;
– use of a range of beam-based techniques for characterising and 

compensating for the coupling errors.

At ultra-low vertical emittances, collective effects which are not normally 
relevant in ultra-relativistic beams can start to impact performance.  
Examples include intrabeam scattering and space charge, 



Appendices
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

For an ultra-relativistic particle, the momentum lost through radiation can be 
expressed in terms of the synchrotron radiation power, Pγ (energy loss per 
unit time):

where ρ is the radius of curvature of the reference trajectory.

Recall (from Lecture 1) that the radiation power from a particle of charge e
and energy E in a magnetic field B is given by:

The dipole may have a quadrupole gradient:

The particle may have some energy deviation:

Substituting these expressions, we find (after some manipulation)…
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

where k1 is the normalised quadrupole gradient in the dipole:

Hence, the normalised momentum loss may be written:

Expanding to first order in the phase space variables:
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

Given the expression for dp/P0 on the previous slide, the transformations of 
the phase space variables become:

The first-order terms give us components in M.

There is already a zeroth-order term that will contribute to D, in the (6,6) 
component, but we have not yet taken proper account of the quantum 
nature of the radiation…
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

Note that the zeroth-order term in the map is going to be found from:

where 〈u2〉 is the mean square of the photon energy.

We use the results (quoted in Lecture 1):

to find that, to zeroth-order in the phase space variables:

Note that this term is first-order in ds, whereas the first contribution we found 
is second-order in ds; hence the first contribution vanishes in the limit ds → 0.
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

Hence, we find that, for a thin slice of dipole of length ds, the radiation 
effects can be represented by the matrices:
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Appendix B: Vertical dispersion and vertical emittance

In the absence of betatron coupling, the vertical emittance may be 
calculated from:

where:

Assuming that the vertical dispersion is generated by random errors around 
the machine, we can make the approximation:

Hence, the expression for the vertical emittance becomes:
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Appendix B: Vertical dispersion and vertical emittance

Now, compare the definition of the curly-H function:

with the action of a particle performing betatron oscillations:

Just as we can write the vertical coordinate in terms of action-angle 
variables:

so we can write the dispersion:

Hence:

Thus, we have:
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