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Lecture 1 summary

In Lecture 1, we:
• discussed the effect of synchrotron radiation on the (linear) motion of 

particles in storage rings;

• derived expressions for the damping times of the vertical, horizontal 
and longitudinal emittances;

• discussed the effects of quantum excitation, and derive expressions for 
the equilibrium horizontal and longitudinal beam emittances in an 
electron storage ring.
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Lecture 1 summary: equilibrium beam sizes

The natural emittance is:

The natural energy spread and bunch length are given by:

The momentum compaction factor is:

The synchrotron frequency and synchronous phase are given by:
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Lecture 1 summary: synchrotron radiation integrals

The synchrotron radiation integrals are:
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Lecture 2 objectives: lattices for low-emittance electron storage rings

In this lecture, we shall:

• derive expressions for the natural emittance in four types of lattice:

• FODO

• DBA (double-bend achromat)

• multi-bend achromat, including the triple-bend achromat (TBA)

• TME (theoretical minimum emittance)

• consider how the emittance of an achromat may be reduced by 
"detuning" from the zero-dispersion conditions;

• (in Appendix A) discuss the use of wigglers to reduce the natural 
emittance in a storage ring;

• (in Appendix A) derive an expression for the natural emittance in a 
wiggler-dominated storage ring.
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Calculating the natural emittance in a lattice

In Lecture 1, we showed that the natural emittance is given by:

where Cq is a physical constant, γ is the relativistic factor, jx is the horizontal 
damping partition number, and I5 and I2 are synchrotron radiation integrals

jx, I5 and I2 are all functions of the lattice, and independent of the beam 
energy.

In most storage rings, if the bends have no quadrupole component, the 
damping partition number jx ≈ 1.  In this case, we just need to evaluate the 
two synchrotron radiation integrals:

If we know the strength and length of all the dipoles in the lattice, it is 
straightforward to evaluate I2.

Evaluating I5 is more complicated: it depends on the lattice functions…
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Case 1: natural emittance in a FODO lattice

Let us consider the case of a simple FODO lattice.  To simplify this case, we 
will use the following approximations:

– the quadrupoles are represented as thin lenses;
– the space between the quadrupoles is completely filled by the dipoles. 
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Case 1: natural emittance in a FODO lattice

With the approximations in the previous slide, the lattice functions (Twiss 
parameters and dispersion) are completely determined by the following 
parameters:

– the focal length f of a quadrupole;
– the bending radius ρ of a dipole;
– the length L of a dipole.

The bending angle θ of a dipole is given by:

In terms of these parameters, the horizontal beta function and dispersion at 
the centre of the horizontally-focusing quadrupole are given by:

By symmetry, at the centre of a quadrupole, αx = ηpx = 0.
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Case 1: natural emittance in a FODO lattice

We also know how to evolve the lattice functions through the lattice, using 
the transfer matrices, M.

For the Twiss parameters, we use:

where:

The dispersion can be evolved using:

For a thin quadrupole, the transfer matrix is given by:

For a dipole, the transfer matrix is given by:
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Case 1: natural emittance in a FODO lattice

With the expressions for the Twiss parameters and dispersion from the 
previous two slides, we can evaluate the synchrotron radiation integral I5.

Note: by symmetry, we need to evaluate the integral in only one of the 
two dipoles in the FODO cell.

The algebra is rather formidable.  The result is most easily expressed as a 
power series in the dipole bending angle θ.  We find that:
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Case 1: natural emittance in a FODO lattice

To find a simple expression for the natural emittance, we make two further 
approximations:

– We assume that the dipole bending angle θ is small, i.e. θ << 1, in 
which case only the first term in the series expression for I5/I2
survives.

– We assume that the bending radius ρ is large compared to the 
quadrupole focal length f, i.e. ρ >> f.

With these two assumptions, we have:

Making the approximation jx ≈ 1 (since we have no quadrupole component in 
the dipole), and writing ρ = L/θ, we have:
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Case 1: natural emittance in a FODO lattice

We have derived an approximate expression for the natural emittance of a 
lattice consisting entirely of FODO cells:

Notice how the emittance scales with the beam and lattice parameters:
– The emittance is proportional to the square of the energy.
– The emittance is proportional to the cube of the bending angle.  

Increasing the number of cells in a complete circular lattice reduces 
the bending angle of each dipole, and reduces the emittance.

– The emittance is proportional to the cube of the quadrupole focal 
length.  Stronger quadrupoles have shorter focal lengths, and reduce 
the emittance.

– The emittance is inversely proportional to the cube of the cell (or 
dipole) length.  Shortening the cell reduces the lattice functions, and 
reduces the emittance.
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Case 1: natural emittance in a FODO lattice

Recall that the phase advance in a FODO cell is given by:

This means that a stable lattice must have:

In the limiting case, μx = 180°, and we have the minimum emittance in a 
FODO lattice:

More typically, a FODO lattice might have a phase advance per cell μx = 90°, 
in which case:
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Case 1: natural emittance in a FODO lattice

Using the above formulae, we estimate that a storage ring constructed from 
16 FODO cells with 90° phase advance per cell, and storing beam at 2 GeV 
would have a natural emittance of 125 nm.

Many modern applications (including light sources and colliders) demand 
emittances one or two orders of magnitude smaller.

How can we design the lattice to achieve a smaller natural emittance?

A clue is provided if we look at the curly-H function in a FODO lattice…
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Case 1: natural emittance in a FODO lattice

The curly-H function remains at a relatively constant value throughout the
lattice.  Perhaps we can reduce it in the dipoles…
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Case 2: natural emittance in a DBA lattice

As a first attempt at reducing the natural emittance, let us try designing a 
lattice that has zero dispersion at one end of each dipole.  This can be 
achieved using a double bend achromat (DBA) lattice.



17 Lecture 2: Emittance and Lattice DesignLow Emittance Machines

Case 2: natural emittance in a DBA lattice

First of all, let us consider the constraints needed to achieve zero dispersion 
at either end of the cell.

Assuming that we start at one end of the cell with zero dispersion, then, by 
symmetry, the dispersion at the other end of the cell will also be zero if the 
central quadrupole simply reverses the gradient of the dispersion.

In the thin lens approximation, this condition can be written:

Hence, the central quadrupole must have focal length:

The actual value of the dispersion is determined by the dipole bending angle 
θ, the bending radius ρ, and the drift length L:
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Case 2: natural emittance in a DBA lattice

Is this type of lattice likely to have a lower natural emittance than a FODO 
lattice?  We can get an idea by looking at the curly-H function.

Note that we use the same dipoles (bending radius and length) for our 
example in both cases (FODO and DBA).  In the DBA lattice the curly-H 
function is reduced by a significant factor, compared to the FODO lattice.
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Case 2: natural emittance in a DBA lattice

Let us calculate the minimum natural emittance of a DBA lattice, for given 
bending radius ρ and bending angle θ in the dipoles.

To do this, we need to calculate the minimum value of:

in one dipole, subject to the constraints:

where η0 and ηp0 are the dispersion and the gradient of the dispersion at the 
entrance of a dipole.

We know how the dispersion and the Twiss parameters evolve through the 
dipole, so we can calculate I5 for one dipole, for given initial values of the 
Twiss parameters α0 and β0.

Then, we simply have to minimise the value of I5 with respect to α0 and β0.

Again, the algebra is rather formidable, and the full expression for I5 is not 
especially enlightening…
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Case 2: natural emittance in a DBA lattice

We find that, for given ρ and θ and with the constraints:

the minimum value of I5 is given by:

which occurs for values of the Twiss parameters at the entrance to the 
dipole:

where L = ρθ is the length of a dipole.

Since:

we can immediately write an expression for the minimum emittance in a 
DBA lattice…
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Case 2: natural emittance in a DBA lattice

The approximation is valid for small θ.  Note that we have again assumed 
that, since there is no quadrupole component in the dipole, jx ≈ 1.

Compare the above expression with that for the minimum emittance in a 
FODO lattice:

The minimum emittance in each case scales with the square of the beam 
energy, and with the cube of the bending angle of a dipole.  However, the 
minimum emittance in a DBA lattice is smaller than that in a FODO lattice 
(for given energy and dipole bending angle) by a factor 4√15 ≈ 15.5 .

This is a significant improvement… but can we do even better?
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Case 3: natural emittance in a TME lattice

We used the constraints:

to define a DBA lattice; but to get a lower emittance, we can consider 
relaxing these constraints.

If we relax these constraints, then we may be able to achieve an even lower 
natural emittance.

To derive the “theoretical minimum emittance” (TME), we write down an 
expression for:

with arbitrary initial dispersion η0, ηp0, and Twiss parameters α0 and β0 in a 
dipole with given bending radius ρ and angle θ.

Then we minimise I5 with respect to variations in η0, ηp0, α0 and β0…
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Case 3: natural emittance in a TME lattice

The result is:

The minimum emittance is obtained with dispersion at the entrance to a 
dipole:

and with Twiss functions at the entrance:
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Case 3: natural emittance in a TME lattice

Note that with the conditions for minimum emittance:

the dispersion and the beta function reach a minimum in the centre of the 
dipole.  The values at the centre of the dipole are:

What do the lattice functions look like in a single cell of a TME lattice?

Because of symmetry in the dipole, we can consider a TME lattice cell as 
containing a single dipole (as opposed to two dipoles, which we had in the 
cases of the FODO and DBA lattices)…
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Case 3: natural emittance in a TME lattice

Note: the lattice shown in this example does not actually achieve the exact conditions 
needed for absolute minimum emittance.  A more complicated lattice would be 
needed for this…
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Summary: natural emittance in FODO, DBA and TME lattices

Lattice Style Minimum Emittance Conditions

90° FODO

180° FODO

DBA

TME
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Comments on lattice design for low emittance lattices

The results we have derived have been for "ideal" lattices that perfectly achieve the 
stated conditions in each case.

In practice, lattices rarely, if ever, achieve the ideal conditions.  In particular, the beta 
function in an achromat is usually not optimal for low emittance; and the dispersion 
and beta function in a TME lattice are not optimal.

The main reasons for this are:
– It is difficult to control the beta function and dispersion to achieve the ideal low-

emittance conditions with a small number of quadrupoles.
– There are other strong dynamical constraints on the design that we have not 

considered: in particular, the lattice needs a large dynamic aperture to achieve 
a good beam lifetime.

The dynamic aperture issue is particularly difficult for low emittance lattices.  The 
dispersion in low emittance lattices is generally low, while the strong focusing leads to 
high chromaticity.  Therefore, very strong sextupoles are often needed to correct the 
natural chromaticity.  This limits the dynamic aperture.

The consequence of all these issues is that in practice, the natural emittance of a 
lattice of a given type is usually somewhat larger than might be expected using the 
formulae given here.



28 Lecture 2: Emittance and Lattice DesignLow Emittance Machines

Further Options and Issues

We have derived the main results for this lecture.

However, there are (of course) many other options besides FODO, DBA and 
TME for the lattice "style".

In the remainder of this lecture, we will discuss:
– Use of the DBA lattice in third-generation synchrotron light sources.
– Detuning the DBA to reduce the emittance.
– Use of multi-bend achromats to reduce the emittance.

See the Appendix for:
– Effects of insertion devices on the natural emittance in a storage ring.
– Natural emittance in wiggler-dominated storage rings.



29 Lecture 2: Emittance and Lattice DesignLow Emittance Machines

DBA lattices in third generation synchrotron light sources

Lattices composed of DBA cells have been a popular choice for third 
generation synchrotron light sources.

The DBA structure provides a lower natural emittance than a FODO lattice 
with the same number of dipoles

The long, dispersion-free straight sections provide ideal locations for 
insertion devices such as undulators and wigglers.

Lattice functions in 
an early version of 
the ESRF lattice.
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“Detuning” the DBA lattice

If an insertion device, such as an undulator or wiggler, is incorporated in a 
storage ring at a location with large dispersion, then the dipole fields in the 
device can make a significant contribution to the quantum excitation (I5).

As a result, the insertion device can lead to an increase in the natural 
emittance of the storage ring.

By using a DBA lattice, we provide dispersion-free straights in which we can 
locate undulators and wigglers without blowing up the natural emittance.

However, there is some tolerance.  In many cases, it is possible to “detune”
the lattice from the strict DBA conditions, thereby allowing some reduction in 
natural emittance at the cost of some dispersion in the straights.

The insertion devices will then contribute to the quantum excitation; but 
depending on the lattice and the insertion devices, there may still be a net 
benefit in the reduction of the natural emittance compared to a lattice with 
zero dispersion in the straights.
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“Detuning” the DBA lattice

Some light sources that were originally designed with zero-dispersion 
straights take advantage of tuning flexibility to operate routinely with 
dispersion in the straights, thus achieving lower natural emittance and 
providing better output for users.

For example, the ESRF…
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Multi-bend achromats

In principle, it is possible to combine the DBA and TME lattices by having an 
arc cell consisting of more than two dipoles.

– The dipoles at either end of the cell have zero dispersion (and 
gradient of the dispersion) at their outside faces, thus satisfying the 
“achromat” condition.

– The lattice is tuned so that in the “central” dipoles, the Twiss 
parameters and dispersion satisfy the TME conditions.

Since the lattice functions are different in the central dipoles compared to 
the end dipoles, we have additional degrees of freedom we can use to 
minimise the quantum excitation.

Therefore, it is possible to have cases where the end dipoles and central 
dipoles differ in:

– the bend angle (i.e. length of dipole), and/or
– the bend radius (i.e. strength of dipole).
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Multi-bend achromats

For simplicity, let us consider the case where the dipoles all have the same 
bending radius (i.e. they all have the same field strength), but vary in length.

Assuming each arc cell has a fixed number, M, of dipoles, the bending 
angles must satisfy:

Since the synchrotron radiation integrals are additive, for an M-bend 
achromat we can write:
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Multi-bend achromats

Hence, in an M-bend achromat,

Minimising the ratio I5/I2 with respect to α gives:

Hence, the natural emittance in an M-bend achromat is given by:

Note that θ is the average bending angle per dipole: the central bending 
magnets should be longer than the outer bending magnets by a factor 3√3.

Of course, the emittance can always be reduced by "detuning" the achromat
to allow dispersion in the straights…
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Example of a Triple-Bend Achromat: the Swiss Light Source

The storage ring in the Swiss Light Source consists of 12 TBA cells, has a 
circumference of 288 m, and beam energy 2.4 GeV.

In the "zero dispersion" mode, the natural emittance is 4.8 nm·rad.
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Example of a Triple-Bend Achromat: the Swiss Light Source

Detuning the achromat to allow dispersion in the straights reduces the 
natural emittance from 4.8 nm·rad to 3.9 nm·rad (a reduction of about 20% 
compared to the zero-dispersion case).
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Summary 1

The natural emittance in a storage ring is determined by the balance between the 
radiation damping (given by I2) and the quantum excitation (given by I5).

The quantum excitation depends on the lattice functions.  Different "styles" of lattice 
can be used, depending on the emittance specification for the storage ring.

In general, for small bending angle θ the natural emittance can be written as:

where θ is the bending angle of a single dipole, and the numerical factor F is 
determined by the lattice style:
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Summary 2

Achromats have been popular choices for storage ring lattices in third-
generation synchrotron light sources for two reasons:

– they provide lower natural emittance than FODO lattices;
– they provide zero-dispersion locations appropriate for insertion 

devices (wigglers and undulators).

Light sources using double-bend achromats (e.g. ESRF, APS, SPring-8, 
DIAMOND, SOLEIL…) and triple-bend achromats (e.g. ALS, SLS) have 
been built.

Increasing the number of bends in a single cell of an achromat ("multiple-
bend achromats") reduces the emittance, since the lattice functions in the 
"central" bends can be tuned to conditions for minimum emittance.

"Detuning" an achromat to allow some dispersion in the straights provides 
the possibility of further reduction in natural emittance, by moving towards 
the conditions for a theoretical minimum emittance (TME) lattice.



Appendix
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Appendix A: Effect of insertion devices on the natural emittance

Insertion devices such as wigglers and undulators are commonly used in 
third generation light sources to generate radiation with particular properties.

Usually, insertion devices are designed so that the integral of the field along 
the length of the device is zero: therefore, the overall geometry of the 
machine is not changed.  However, since they produce radiation, they will 
contribute to the synchrotron radiation integrals, and hence affect the natural 
emittance of the lattice.

If a wiggler or undulator is inserted at a location with zero dispersion, then in 
the approximation that we neglect the dispersion generated by the device 
itself, there will be no contribution to I5; however, there will be a non-zero 
contribution to I2 (the energy loss of a particle).

Hence, since the natural emittance is given by the ratio I5/I2, wigglers and 
undulators can reduce the natural emittance of the beam.  In effect, they 
enhance the radiation damping while making little contribution to the 
quantum excitation.

However, to obtain a reasonably accurate value for the natural emittance, 
we have to consider the dispersion generated by the insertion device itself.
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Appendix A: A simple model of a wiggler
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Appendix A: Wigglers increase the energy loss from synchrotron radiation

The total energy loss per turn is given in terms of the second synchrotron 
radiation integral:

The integral extends over the entire circumference of the ring. The 
contribution from the wigglers is:

The approximation comes from the fact that we neglect end effects.

Note that I2w depends only on the peak field and the total length of wiggler 
(and the beam energy), and is independent of the wiggler period.
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Appendix A: Wiggler contribution to the natural emittance

The natural emittance depends on the second and fifth synchrotron radiation 
integrals:

The contribution of the wiggler to I5 depends on the beta function in the 
wiggler.  Let us assume that the beta function is constant (or changing 
slowly), so αx ≈ 0.

Then, to calculate I5, we just need to know the dispersion…

m 13

2

52
0 10832.3 −×== q

x
q C

Ij
IC γε

22
3522 21

pxxpxxxxxx
x dsIdsI ηβηηαηγ

ρρ
++=== ∫∫ H

H   



44 Lecture 2: Emittance and Lattice DesignLow Emittance Machines

Appendix A: Dispersion generated in a wiggler

In a dipole of bending radius ρ and quadrupole gradient k1, the dispersion 
obeys the equation:

Assuming that k1 = 0 in the wiggler, we can write the equation for ηx as:

For kwρw >> 1, we can neglect the second term on the left, and we find:

122

2 11 kKK
ds

d
x

x +==+
ρρ

ηη

( )
sk

B
Bsk

B
B

ds
d

w
w

wx
wx sinsin2

2

2

2

2

ρ
η

ρ
η

=+

ww

w
px

ww

w
x k

sk
k

sk
ρ

η
ρ

η cossin
2 −≈−≈



45 Lecture 2: Emittance and Lattice DesignLow Emittance Machines

Appendix A: Wiggler contribution to the natural emittance

The wiggler contribution to I5 can be written:

Using:

we have:
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Appendix A: Natural emittance in a wiggler-dominated storage ring

Combining expressions for I2w and I5w, then, in the case that the wiggler 
dominates the contributions to I2 and I5, we can write for the natural 
emittance:

Using short period, high field wigglers, we can achieve small emittances, if 
the wigglers are placed at locations with small horizontal beta function.

Note that in the vast majority of electron storage rings, insertion devices only 
account for 10% - 20% of the synchrotron radiation energy loss: so the 
above formula cannot be used to calculate the emittance.

However, in the damping rings of a future linear collider, wigglers would 
account for around 90% of the synchrotron radiation energy loss. The 
natural emittance will be dominated by the wiggler parameters.
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Appendix A: Wiggler contribution to the natural energy spread

The natural energy spread is given in terms of the second and third 
synchrotron radiation integrals:

Since I3 does not depend on the dispersion, the wiggler potentially makes a 
significant contribution to the energy spread.  Writing for the bending radius 
in the wiggler:

we find:

If the wiggler dominates the synchrotron radiation energy loss, then the 
natural energy spread in the ring will be given by:
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