

THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE AND TECHNOLOGY

Particle Accelerators and Their Reach for Science: Present and Future

Swapan Chattopadhyay Cockcroft Institute

The University of Manchester

Science and Instruments of Discovery and Innovation: Structures and Forces

Accelerator-driven Intense Charged Particle Beams serve Sciences from the Sub-atomic to the Cosmic

STRUCTURES and FORCES

Discovery Class Science: Particle Physics

Leinweber, Signal et al.

E=mc²

All the weight of the proton is in the energetic dynamics of the force in full color: Quantum Chromo Dynamics

u + u + d = protonmass: $0.003 + 0.003 + 0.006 \neq 0.938$

<r> = 0.16 fm

The cosmological inventory is now well-delineated

· But we know neither what the "dark energy" or the "dark matter" is

AXION

- A particle relic from the Big Bang is strongly implied for DM — WIMPs ?
 - Axions ?

P02552-ljr-u-004

THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE AND TECHNOLOGY

1st cyclotron, ~1930 E.O. Lawrence 11-cm diameter 1.1 MeV protons

> LHC, 2008 9-km diameter 7 TeV protons

after ~80 years ~10⁷ x more energy ~10⁵ x larger

The University of Manchester

Luminosity and its continual improvement over time

(number of events/unit time)
= (cross section) X (luminosity)

Beams in future e+e- colliders must be on the nanometer scale

Ultrabright, Ultrashort Beams – Outlook

"only a few photons in coherence volume"

- Understanding "Quantum Optics" driven by accelerated charges will be critical in these studies. → Coherence and degeneracy of an attosecond light pulse in the THz!!
- Opportunities in Ultrafast Science, Nonlinear Dynamics, SCRF, THz Laboratory Astrophysics look exciting!!

Fascinating graduate research!!

The science need

The fundamental requirement is to understand the *dynamic* behaviour of matter, often in very small (nm) units, on very fast (fs) timescales

We need not just to determine *structure* with high precision, but to understand *how these structures work*

Scientific American Jun 2002

Courtesy: Wendy Flavell, University of Manchester

Physics Today Jan 2004

Light Fantastic and Bright!

4GLS

XUV FEL

 10^{3} 10^{3}

 10^{2}

102

Off the scale brightness....

 $>10^8$ x brighter than **3rd generation SR**

peak power output equivalent to that needed to light every home in London.....

Courtesy: Wendy Flavell, University of Manchester

Intense Charged Particle Beam-generated Photon Beams serve a Colorful Canvas of Photon Sciences

Discovery

21st CENTURY: AMAZING LIGHT!! Hidden Energies

Fundamentals at the Core of the Physical World

- Hidden Dimensions, Symmetries and Structures
- Origins of Mass, Dark Matter and Dark Energy
- Unification of Gravity
- Exotic States of Matter
- Ultrabright, Ultrashort and Ultrafast Light

To master the global resources necessary for these discoveries, international effort must be consolidated into only a few carefully selected facilities so large that they can only be supported internationally ...

Emergence of a few grand future machines:

- Large Hadron Collider
- X-ray Free Electron Laser
- International Linear Collider
- International Neutrino Factory/Muon Collider

Grand Future Machines

SRF will play a major role in the future SC facilities

		U.S. Department of Energy	Office of Science	20-Year Facility Outlook	Peak of Cost Profile
Priorit	y Program	n Facility	Today		20 Years from
1	FES	ITER			► Today
2	ASCR	UltraScale Scientific Computing Capability			
	HEP	Joint Dark Energy Mission			
Tie fo	BES	Linac Coherent Light Source			
3	BER	Protein Production and Tags			
-Tem	NP	Radioactive Beams			
Near	BER	Characterization and Imaging			
Tie fo	NP	Meson factories	"I-		
7	ASCR	Esnet Upgrade			
	BES	Transmission Electron Achromatic Microscope		cision -	
12	HEP	BTeV			
13	HEP	Linear Collider			
	BER	Analysis and Modeling of Cellular Systems			
_ Tie fo	BES	Spallation Neutron S.			
Leo 14	BES	SNS Second Target Station			
Mid	BER	Whole Proteome Analysis			
Tie fo	NP	Double Beta Decay Underground Detector			
18	FES	Next Step Spherical Tokamak			
Tie fe	UNP	LHeC			
21	BES	National Synchrotron Light Source Ungrade			
	BES	Advanced Light Source Upgrade			
lerm	BES	Advanced Photon Source Upgrade			
Tie fo	NP	LHeC-ep			
23	FES	Fusion Energy Contingency			
	BES	HFIR Second Cold Source and Guide Hall			
	FES	Integrated Beam Experiment			
F	^p eak Cost	Near-term Mid-terr	n 📕 Far-term 📕		
Programs:					
	ASC BES	R = Advanced Scientific Computing Research = Basic Energy Sciences	FES = Fusion Energy Sc HEP = High Energy Phys	iences ics	

NP = Nuclear Physics

- BES BER
- Basic Energy SciencesBiological and Environmental Research

Superconductivity

Heike Kammerlingh-Onnes, 1911: SC in mercury

Figure 1-2. Heike Kamerlingh Onnes. Country AIP fee. Entr Library and

Pulsed Operation of Normal Conducting Accelerating Cavities

Continuous Operation of Superconducting accelerating Cavities

OUTLOOK SRF – A Robust Global Technology

Overlap of SRF activities in accelerator projects

SRF technology is central to highenergy/nuclear physics, high current proton drivers, synchrotron radiation sources and free electron lasers.

Superconducting linear accelerators and colliders

Synchrotron Radiation Sources and FELS (Dylla's talk)

The University of Manchester

High Current Proton Drivers

The Superconducting Linear Accelerator

Amazing Light and Particles!

The inverse of a Radiative process is Acceleration

Courtesy: Rebecca Seviour, Cockcroft Institute/Lancaster University

Acceleration and Radiation: A Tangled Web!

Total Field in region R' bounded by boundaries 'B' $\vec{E} = \vec{E}_{\omega,\tau}(\omega,\vec{r}) + \vec{e}_{s}(\omega,\vec{r}) N$ R B B B B ENERGY LOSS TO GOHERENT SPONTANEOUS GRADIATION The field energy density: $= \int |\vec{E}_{ext}|^2 d\vec{r} dw + N^2 \int |\vec{e}_s(w,\vec{r})|^2 d\vec{r} dw$ $= \int |\vec{E}_{ext}|^2 d\vec{r} dw + N^2 \int |\vec{e}_s(w,\vec{r})|^2 d\vec{r} dw$ EXTERNAL V + 2 $\Re \left[N \int \vec{E}_{ext}(\vec{r},w) \cdot \vec{e}_s(\vec{r},w) d\vec{r} dw \right]$ ENERGY STIMULATED ABSORPTION/RADIATION : EXCHANGE OF ENERGY BETWEEN PARTICLES and WAVES : ENERGY GAIN (DECEL. ENERGY OFPARTICLES) or LOSS (ACCEL. OF PARTICLES).

Scaling

for optimal acceleration/deceleration, linear or otherwise m Eext, there must be optimal overlaps of 'acceleration' mode $\vec{E}_{ext}(w, \vec{k})$ with 'radiation' mode $\vec{e}_s(w, \vec{k})$. The particles are accelerated if the coherent radiation loss is less than the energy gain, leading to the restriction: N < (|Eextl/e) } $\equiv N_{critical}$ on the number of particles in a bruch that can be effectively accelerated before losses start to rominate, leading to deceleration ($\mathcal{F} \equiv \lambda/2\pi$ is the reduced wavelength of accelerating mode). $E_{acc} \sim (\hat{\lambda})^{-1} \implies N_{critical} \sim \hat{\lambda}$

Technologies and Wavelengths

Technology	Wave- length λ	Potential Gradient	R&D	Technology Details
SCRF (Superconducting Radio-Frequency)	>20 cm	~ 100 MV/m	Superconducting materials research; new superconductor	'Bismuthate' materials and micro-layered thin-film technology
RF (Radio-Frequency)	<10 cm	~ 200 MV/m	Power sources prototype, drive beam dynamics sheet beam klystron research	High frequency conventional klystrons and two-beam schemes
mm-wave, THz, Photonic Band-Gap	<2 cm	>1 GV/m	Power source invention, structure invention, fabrication tech.	Dielectric and conducting materials
Lasers & beams in plasmas & structures	<200 µm	>10 GV/m	Module prototype, rep. rate, guiding, staging, beam dynamics	Laser, structure-based Laser, plasma-based Beam, structure-based Beam, plasma-based

 $E_{acc} \sim \lambda^{-1}$

N_{acc} ~ ??

Photonic Band Gap Structure

Courtesy: Rebecca Seviour, Cockcroft Institute/Lancaster University

TE Band Structure of Crystal

Plasma Acceleration

Plasma acceleration has several types depending how the plasma wave is formed:

Plasma Wakefield acceleration: Plasma wave formed by an electron bunch

Laser Wakefield acceleration: Laser pulse is used to form a plasma wave.

Laser Beat-wave acceleration: Plasma wave arises based on different frequency generation of two laser pulses.

Self-modulated laser Wakefield acceleration: Leave for another day Courtesy: Rebecca Seviour, Cockcroft Institute/Lancaster University Workshop on High Gradient RF Argonne National Laboratory October 7-9, 2003

50 MV/m, 225 um gap

Delicate Periodicity: Issues of Surface Finish and Medium Homogeneity

Field Emission

Courtesy: Rebecca Seviour, Cockcroft Institute/Lancaster University

20 µm

Plasma Spots

Cracking

Hot Spots

340 MV/m

States of Matter: Astrophysical & Laboratory Plasmas Density and Temperature

Density and temperature diagram of astrophysical and laboratory plasma phenomena. The solid black curve depicts the state diagram of the sun showing the plasma state of its center on the right end. The straight line $r=E_{pot}/E_{kin}=1$ separates ideal and strongly coupled hydrogen plasmas.

Beams Under Extreme Conditions

E 10 ² – 10 ⁶ GV/m	, 10 ⁻⁴ eV ↔ 1mm τ _{cool} ~ 10 ⁻⁴ sec Macroscopic Coulomb Crystal	ho ~ 10 ¹⁸ - 10 ²⁴ /cc λ _ρ = interparticle distance Comparable to solids	$ au \sim 10^{-18} - 10^{-15}$ second Ultrashort electron and x-ray bursts
<mark>Today's Technology:</mark> E<100 MV/m (10 ⁻¹ GV/m)	Today: 1 eV ↔ 1000 Å τ _{cool} ~ 1 sec.	Today: ∼ 10 ¹³ - 10 ¹⁴ /cc	<mark>Today:</mark> τ ~ 10 ⁻¹⁴ seconds (10 femtoseconds)
DISCOVERY New Phases of Matter Non-Linear QED Dark Matter Dark Energy	DISCOVERY Crystalline Beams Cold Muons Condensate Beams, Fermionic and Bosonic	DISCOVERY New Phases of Matter	DISCOVERY Ultrafast Dynamics in Condensates and Living Matter
TECHNOLOGY/INNOVATION High Intensity Atomic Lasers Free Electron Accelerators Laser-Plasma Acceleration 	TECHNOLOGY/INNOVATION Optical Cooling	TECHNOLOGY/INNOVATION High energy-density laser plasma-beam interaction	TECHNOLOGY/INNOVATION Optical manipulation of beams

THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE AND TECHNOLOGY

ULTRABRIGHT, ULTRAFAST, ULTRACOLD, ...

--Scientific Possibilities/Discoveries

The University of Manchester

Motivation

UNIVERSITY OF LIVERPOOL

Phonon Dynamics on a Surface

Primary Event in "Vision" Ultrafast Coherent Chemical Reactions

Controlled Study of "Protein Folding"

Particle Beam Condensates

Beams of BOSONS and FERMIONS at the limit of quantum degeneracy where quantum mechanical collective behavior is important. Can one ever cool particle

STUDY OF The Dynamics of Quantum Collapse & Entanglement via Attosecond Bursts

Although we are comfortable with quantum physics, we still have a hard time with "quantum control". No understanding is complete until one can engineer simple systems.

Incoherent vs. Coherent Ionization

"Coherent Ionization "Incoherent "Jonization Displace Valence Electron Nucleus" "Norclews 2 Ultrashort "attosecond" pulse leading to coherent displacement, of the valence "electronic cloud" with respect to the nucleus Long Pulse leading to ejection of single Valence electrons

Color Mapping in QCD

Strategic Simulation: Lattice-gauge QCD Code

THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE AND TECHNOLOGY

ULTRASHORT PULSES -- Innovation and Generation Mechanisms

The University of Manchester

Scattering, Slicing and Bunching

Thomson/Compton Scattering Laser-assisted atto-slicing:

• Possibilities with a storage ring or a stand-alone linac

Laser-assisted atto-bunching:

- Laser-plasma acceleration
- Ponderomotive acceleration

Thomson Scattering for Femtosecond X-rays

"X-ray based Sub-Picosecond Electron Bunch Characterization using 90° Thomson Scattering", (with W. Leemans, et al), *PRL*, Vol. 77, page 4182, 1996.

X-rays from IR DEMO at Jefferson Lab

Potential Fields of Research

Laser Femto-slicing of Electron Beams

Generation of Femtosecond Pulses of Synchrotron Radiation

R. Schoenlein, S. Chattopadhyay, H.H.W. Chong, T.E. Glover, P.A. Heimann, C.V. Shank, A.A. Zholents, M.S. Zolotorev <u>Science</u>, Vol. 287, No. 5461, March 24, 2000, p. 2237.

→ Optical Manipulation of Beams

Atto-Slicing: Laser Slicing Technique

train of ~100 bunches, ~10⁶ e/bunch, 10 kHz rep. rate

- Energy modulation was demonstrated at the ALS for femtosecond x-ray generation
- Micro-bunching at 10 μm was demonstrated at ATF/BNL
- Electron pulse separation (slicing) down to 0.1 μm must be studied

THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE AND TECHNOLOGY

ULTRACOLD BEAMS -- Innovation/Mechanisms

PHASE-SPACE COOLING: Particles and Photons

The University of Manchester

Low Temperature

Dynamical Phase-Space of a Particle

Henri Poincaré Geometry and Topology of Phase Space, 1880's, France

Poincaré looked at Phase-Space as full of geometrical and topological structures

Flow in Phase Space

Joseph Liouville **Phase Space Conservation, 1837 and Non-conservation, 1838, France, with Dissipative Forces**

Hamiltonian Mapping Generating Incompressible Liouvillian Flow in Phase-Space

To Liouville, it was all a <u>SMOOTH FLOW</u>, nothing violent happening anywhere except for gentle deformations: in fact, phase space volume (measure) is conserved for non-dissipative systems.

Charged Particle Beam Cooling

Gersh I. Budker Electron Cooling, 1978 Novosibirsk, Russia:

introduced dissipation through Collisional Relaxation Simon van der Meer Stochastic Cooling, 1968, CERN, Geneva, Switzerland:

introduced 'virtual' dissipation via a Maxwell's Demon!

Stochastic Cooling

To van der Meer, phase space is mostly empty and where particles live, they cluster together leaving space in between \longrightarrow Possibility of employing a MAXWELL'S DEMON to herd them into a tight bunch, if only one could see the phase space clutter!

١Ż

Phase Space Control and Cooling of Charged Particles in a Storage Ring

Laser cooling limited due to "<u>fixed</u>" narrow-band laser spectral lines. Circumvented in storage rings by microwave "Broadband" stochastic N Particles

Information Processing in Two-Dimensional Fluctuation Signals

Degrees of freedom of fluctuation signals in time (t)-frequency(ω) plane

These are "temporal" samples <u>or</u> slices in time. How about transverse "spatial" samples? Microwaves are too long in wavelength.

Wide-band Cooling Feedback Loop Electronics for Bunched Gold Beams in RHIC (Relativistic Heavy Ion Collider) at BNL

Optical Sampling of Charged Particle Beam

Optical Coherence << Beam Emittance Volume

Transverse Sampling of Particle Beams by Radiation Beam

Second Harmonic Lasing at JLab FEL

 $\tau \approx 300 \, \mathrm{fs}$

resolves transverse beam at "micron" resolution

- 2.925 microns, 0.6 micron detuning width
- 4.5 W average power

Optical Cooling (Mikhailichenko, Zholents, Zolotorev et al.)

Ultimate limitation by the "quantum" degeneracy parameter => number of photons/sample

Optical Stochastic Cooling

Innovation

Can we do better?

- Can we tame particles as well as we tame light in <u>lasers</u> so we can map the phase-space of a particle beam within a light beam?
- What is the Reward?

A compact Coherent X-ray Source

Compact Laser-Plasma Injectors for High Luminosity Colliders

Compact Coherent SASE X-Ray FEL using a Laser Wiggler

Single Electron Quantum Diffraction Limit

• Ideal optics: $d_a = d_v / M^{-1}$

• Spherical aberrations: $d_s = 1/2C_s a^3$ where Beam Diameter is the virtual source size dv and M-1 is the demagnification of the column

where $C_{\rm s}$ is the spherical aberration coefficient of the final lens and *a* is the convergence half-angle of the beam at the target

• Chromatic aberrations: $d_{\rm c} = C_{\rm c} a DV / V_{\rm b}$

where C_c is the chromatic aberration coefficient, DV is the energy spread of the electrons, and V_b is the beam voltage

 Quantum mechanics:
 d_d = 0.6 L / a

electron wavelength $L = 1.2/(V_b)^{1/2}$ nm, although much smaller than the wavelength of light (0.008 nm at 25 kV), this wavelength can still limit the beam diameter by classical diffraction effects in very high resolution systems

To determine the theoretical beam size of a system, the contributions from various sources can be added in quadrature:

$$d = (d_{\rm g}^2 + d_{\rm s}^2 + d_{\rm c}^2 + d_{\rm d}^2)^{1/2}$$

Pure Single Particle Optics: Classical and Quantum

A plot showing resolution as a function of beam convergence angle for an electron beam column at 30 kV. The plot assumes an energy spread of 1.5 eV, a source diameter of 20 nm, and a fixed demagnification of 5.

Phase Space of a single oscillating electron is already comparable to the phase space of radiation

External Radiation pulse of length L, wavelength λ_o Radiated wavelength: $\lambda \sim \lambda_o/2\gamma^2$

$$\Gamma = \Delta a_R \cdot \Delta \theta_R \sim \lambda/2$$

Taming the Unruly . . . Herding Cats Phase Space of Radiation from a Beam

- High brightness beams of today's accelerators, synchrotron radiation sources, and free electron lasers are dominated by "collective" Coulomb-space charge as well as collisional effects, in addition to single particle classical and quantum optics.
- Typical high-brightness electron beam in today's applications:

	→ Total Charge:	$Q \sim 1 nC (x 10^{-5})$		
	Normalized:	$\varepsilon_{\perp} \sim 1 \text{ mm-m}_{rad} = 10^{-6} \text{ meter}$ (x 10 ⁻²)		
Correlated:	Transverse Emittances:	CHALLENGE!!		
ACHIEVABLE	Relative Energy Spread:	$\frac{\Delta E}{E} \sim 10^{-4}$		
l	→ Pulse Length:	$\tau \sim 200 \text{ fs to } 10 \text{ ps}$ (x 10 ⁻⁵)		
	Transverse Size:	r ~ 10-50 μ m (can be focused to few <u>nm</u> at high energies such as at the ILC)		

Innovations in Energy and Quality Control between Particles and Light are Key to Future Discoveries

from Reader's Digest

THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE AND TECHNOLOGY

Don't Bet on It

AT THE END of every December, when Father Time's odometer is ready to click in another year, experts seem compelled to forecast what the coming year will bring. Economists read their econometric entrails and predict hard times or happy days accordingly; psychics announce that this is the year the San Andreas fault will pitch California into the sea. Well, before you believe any of this year's predictions , consider these vintage prognostications:

-Octave Chanute, aviation pioneer, in 1904 : "The (flying) machine will eventually be fast ; they will be used in sport, but they are not to be thought of as commercial carriers."

— The Literary Digest, 1889: "The ordinary 'horseless carriage' is at present a luxury for the wealthy; and although its price will probably fall in the future, it will never come into as common use as the bicycle." Thomas Edison, on electricity in the home : "Just as certain as death, [George]
Westinghouse will kill a customer within six months after he puts in a system of any size."
Lt. Joseph C. Ives, Corps of Topographical

Engineers, 1861, on the Grand Canyon: "[It] is, of course, altogether valueless Ours has been the first, and will doubtless be the last, party of whites to visit this profitless locality."

-Science Digest, August 1948: "Landing and moving around on the moon offers so many serious problems for human beings that it may take science another 200 years to lick them."

—Physicist and mathematician Lord Kelvin (1824-1907), who seemed to have a corner on the wrongheaded oneliner in his day: "X-rays are a hoax." "Aircraft flight is impossible." "Radio has no future."

-Paul Dickson, *The Future File* (Rawson Associates)

The University of Manchester

