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Content.
• The presentation deals with d.c. magnets only;
• It includes some material presented at the 

‘introductory’ level CAS meetings;
• Additional material includes:

the significance of vector potential in 
magnet design;

using magnet measurements to judge 
magnetic quality of a design and 
subsequent manufacture.
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No Currents - Maxwell’s equations:
∇.B = 0 ;
∇ H = j ;

In the absence of currents: j = 0.

Then we can put: B = - ∇φ

So that: ∇2φ = 0       (Laplace's equation).

Taking the two dimensional case (ie constant in the z 
direction) and solving for cylindrical coordinates (r,θ):

φ = (E+F θ)(G+H ln r) + Σn=1
∞ (Jn r n cos nθ +Kn r n sin nθ

+Ln r -n cos n θ + Mn r -n sin n θ )

In the absence of currents: j = 0.

Then we can put: B = - ∇φ

So that: ∇2φ = 0       (Laplace's equation).
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In practical situations:
The scalar potential simplifies to:

φ = Σn (Jn r n cos nθ +Kn r n sin nθ),

with n integral and  Jn,Kn a function of geometry.

Giving components of flux density:

Br = - Σn (n Jn r n-1 cos nθ +nKn r n-1 sin nθ)
Bθ = - Σn (-n Jn r n-1 sin nθ +nKn r n-1 cos nθ) 
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Significance
This  is  an  infinite  series  of  cylindrical  harmonics;  they  
they  define  the  allowed  distributions  of  B in  2 
dimensions  in  the  absence  of  currents within  the  domain  
domain  of  (r,θ).

Distributions  not  given  by  above  are  not  physically  
realisable.

Coefficients  Jn, Kn are determined  by  geometry (iron 
boundaries  or  remote  current  sources).
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Cartesian Coordinates
In Cartesian coordinates, the components are given by:

r
θ

0

Br
Βθ

x

y

Bx = Br cos θ - Bθ sin θ,

By = Br sin θ + Bθ cos θ, 
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Dipole field: n = 1
Cylindrical: Cartesian:
Br = J1 cos θ + K1 sin θ; Bx = J1

Bθ = -J1 sin θ + K1 cos θ; By = K1

φ =J1 r cos θ +K1 r sin θ. φ =J1 x +K1 y

So,  J1 = 0  gives vertical dipole field:

K1 =0  gives  
horizontal  
dipole  field.

B
φ = const.
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Quadrupole field: n = 2
Cylindrical: Cartesian:
Br = 2 J2 r  cos 2θ +2K2 r  sin 2θ; Bx = 2 (J2 x +K2 y)
Bθ = -2J2 r  sin 2θ +2K2 r  cos 2θ; By = 2 (-J2 y +K2 x)
φ =  J2 r 2 cos 2θ +K2 r 2 sin 2θ; φ = J2 (x2 - y2)+2K2 xy

J2 = 0 gives 'normal' or 
‘right’ quadrupole field.

K2 = 0  gives  'skew'  quad  
quad  fields (above  
rotated  by  π/4). 

Lines of flux density
density

Line of constant

scalar potential



Neil Marks; STFC/CI Intermediate CAS, September 07, Cockcroft Institute, Daresbury, UK.

Sextupole field: n = 3
Cylindrical; Cartesian:
Br = 3 J3r2 cos 3θ +3K3r2 sin 3θ; Bx = 3{J3 (x2-y2)+2K3yx}
Bθ= -3J3 r2 sin 3θ+3K3 r2 cos 3θ; By = 3{-2 J3 xy + K3(x2-y2)}
φ =  J3 r3 cos 3θ +K3 r3 sin 3θ; φ = J3 (x3-3y2x)+K3(3yx2-y3)

Line of constant 
scalar potential

Lines of flux 
density

+C

-C

+C

-C

+C

-C J3 = 0 giving 'normal' or 
‘right’ sextupole field.+C

-C

+C

-C

+C

-C
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Summary; variation of By on x axis
Dipole; constant field:

Quad; linear variation:

Sext.: quadratic variation:

x

By

0
0

By

x

x

By
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Vector potential in 2D.
We have: B = curl A (A is vector potential);
and div A = 0
Expanding: B = curl A = 
(∂Az/ ∂y - ∂Ay/ ∂z) i + (∂Ax/ ∂z - ∂Az/ ∂x) j + (∂Ay/ ∂x - ∂Ax/ ∂y) k;

where i, j, k, and unit vectors in x, y, z.

In 2 dimensions Bz = 0; ∂ / ∂z = 0;

So Ax = Ay = 0;

and B = (∂Az/ ∂y ) i - (∂Az/ ∂x) j

A is in the z direction, normal to the 2 D problem.

Note: div B = ∂2Az/ ∂ x ∂y - ∂2Az/ ∂x ∂y = 0;
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Total flux between two points ∝ ΔA
In a two dimensional problem the magnetic flux  between two 
between two points is proportional to the difference between 
between the vector potentials at those points.

B

Φ

A1 A2

Φ ∝ (A2 - A1)

Proof on next slide.
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Proof.
Consider a rectangular  closed  path,  length λ in z direction at 
direction at (x1,y1) and (x2,y2); apply Stokes’ theorem:

x

y
z

(x1, y1) (x2, y2)

λ

B
A

ds

dSΦ = ∫ ∫ B.dS = ∫ ∫ ( curl A).dS = ∫ A.ds

But A  is  exclusively  in  the  z  
direction,  and  is  constant  in this  
direction.
So:
∫ A.ds = l { A(x1,y1) - A(x2,y2)};

Φ = λ { A(x1,y1) -
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Introducing Iron Yokes
What is the ideal pole shape?
•Flux is normal to a ferromagnetic surface with infinite μ:

•Flux is normal to lines of scalar potential, (B = - ∇φ);
•So the lines of scalar potential are the ideal pole shapes!

(but these are infinitely long!)

curl H = 0

therefore ∫ H.ds = 0;

in steel H = 0;

therefore parallel H air = 0

therefore B is normal to surface.

μ = ∞

μ = 1
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Equations for the ideal pole
Equations for Ideal (infinite) poles;
(Jn = 0) for normal (ie not skew) fields:
Dipole:

y=  ± g/2;
(g is interpole gap).
Quadrupole:

xy= ±R2/2;
Sextupole:

3x2y - y3 = ±R3;

R
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The practical Pole
Practically,  poles  are  finite,  introducing  errors; 
these appear as higher harmonics which degrade the field 
field distribution.
However,  the  iron  geometries  have  certain  symmetries  
symmetries  that  restrict the  nature  of  these  errors.

Dipole: Quadrupole:
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Possible symmetries:
Lines  of  symmetry:

Dipole: Quad
Pole  orientation y = 0; x = 0;  y = 0
determines whether pole
is normal or skew.

Additional symmetry x = 0; y = ± x
imposed by pole edges.

The additional constraints imposed  by  the  symmetrical  pole  
pole  edges  limits  the  values  of  n  that  have  non  zero  
coefficients 
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Dipole symmetries

+φ

-φ

Type Symmetry Constraint

Pole orientation φ(θ) = -φ(-θ) all  Jn = 0;

Pole edges φ(θ) = φ(π -θ) Kn non-zero 
only  for:
n = 1, 3, 5, etc;

So, for a fully symmetric dipole, only 6, 10, 14 etc pole errors
errors can be present.

+φ +φ
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Quadrupole symmetries

Type Symmetry Constraint

Pole orientation φ(θ) = -φ( -θ) All  Jn = 0;

φ(θ) = -φ(π -θ)        Kn = 0 all odd n; 

Pole edges φ(θ) =  φ(π/2 -θ)     Kn non-zero 
only  for:
n = 2, 6, 10, etc;

So, a fully symmetric quadrupole, only 12, 20, 28 etc pole 
pole errors can be present.
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Sextupole symmetries

Type Symmetry Constraint

Pole orientation φ(θ) = -φ( -θ) All  Jn = 0;
φ(θ) = -φ(2π/3 - θ) Kn = 0  for all n 
φ(θ) = -φ(4π/3 - θ) not multiples of 3;

Pole edges φ(θ) = φ(π/3 - θ) Kn non-zero only  
for: n = 3, 9, 15, etc. 

So, a fully symmetric sextupole, only 18, 30, 42 etc pole errors
errors can be present.
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Summary - ‘Allowed’ Harmonics
Summary of ‘allowed harmonics’ in fully symmetric magnets:
magnets:

Fundamental 
geometry

‘Allowed’ harmonics

Dipole, n = 1 n = 3, 5, 7, ......
( 6 pole, 10 pole, etc.)

Quadrupole, n = 2 n = 6, 10, 14, ....
(12 pole, 20 pole, etc.)

Sextupole, n = 3 n = 9, 15, 21, ...
(18 pole, 30 pole, etc.)

Octupole, n = 4 n = 12, 20, 28, ....
(24 pole, 40 pole, etc.)



Neil Marks; STFC/CI Intermediate CAS, September 07, Cockcroft Institute, Daresbury, UK.

‘Forbidden’ Harmonics in Dipoles
Asymmetries due to small manufacturing errors in 
dipoles:

n = 2, 4, 6 etc. n = 3, 6, 9, etc.
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‘Forbidden’ Harmonics in Quadrupoles
Asymmetries due to small manufacturing errors in 
quadrupoles:

n = 4  - ve

n = 4  + ve

n = 3;

n = 2 (skew)

n = 3;
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Introduction of currents
Now for   j ≠ 0 ∇ x H = j ; 

To expand, use Stoke’s Theorum:
for  any vector  V and a  closed 
curve s :

∫V.ds =∫∫ curl V.dS

Apply  this  to:      curl H = j ;

dS

ds
V

then  in a  magnetic  circuit:

∫ H.ds = N I;

N I  (Ampere-turns) is  total  current cutting  S
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Excitation current in a dipole

μ >> 

g

λ

1

NI/2

NI/2

So
Bair = μ0 NI / (g + λ/μ);

g,  and  λ/μ are  the  'reluctance'  of  the  gap  and  iron. 

Approximation  ignoring  iron  reluctance (λ/μ << g ):

NI = B g /μ0

B  is  approx  constant  round the loop  
loop  made  up  of  λ and  g, (but  see  
below);

But  in  iron, μ>>1,
and  Hiron = Hair /μ ;
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Relative permeability of low silicon steel
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μ

Parallel to rolling direction Normal to rolling direction.
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Excitation current in quad & sextupole
For  quadrupoles  and  sextupoles,  the required  excitation  can 
excitation  can be  calculated  by  considering  fields  and  gap  
gap  at  large  x. For example:                 Quadrupole:

y

x B

Pole  equation:        xy = R2 /2
On x axes BY = gx;
where  g  is gradient  (T/m).

At  large  x (to  give  vertical  
lines  of  B):

N I = (gx) ( R2 /2x)/μ0
ie

N I = g R2 /2 μ0 (per pole).

The same method for a 
Sextupole,  

( coefficient  gS,),   gives:

N I = gS R3/3 μ0 (per pole)
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General solution for magnets order n
In air (remote currents! ), B = μ0 H 

B = - ∇φ
Integrating over a limited path
(not circular) in air: N I = (φ1 – φ2)/μo
φ1, φ2 are the scalar potentials at two points in air.

Define φ = 0 at magnet centre;
then potential at the pole is: μo NI

Apply the general equations for magnetic
field harmonic order n for non-skew
magnets (all Jn = 0) giving:

N I = (1/n) (1/μ0) {Br/R (n-1)} R n
Where:

NI is excitation per pole;
R is the inscribed radius (or half gap in a dipole);
term in brackets {} is magnet strength in T/m (n-1). 

y

φ = 0

φ = μ0 NI
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Magnet geometry
Dipoles can be ‘C core’ ‘H core’ or ‘Window frame’
''C' Core:
Advantages:

Easy access;
Classic design;

Disadvantages:
Pole shims needed;
Asymmetric (small);
Less rigid; Shim

The ‘shim’ is a small, additional piece of ferro-magnetic material added 
added on each side of the two poles – it compensates for the finite cut-
cut-off of the pole, and is optimised to reduce the 6, 10, 14...... pole error 
error harmonics.
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A typical ‘C’ cored Dipole

Cross section of 
the Diamond 
storage ring 
dipole.



Neil Marks; STFC/CI Intermediate CAS, September 07, Cockcroft Institute, Daresbury, UK.

H core and window-frame magnets

‘H core’:
Advantages:

Symmetric;
More rigid;

Disadvantages:
Still needs shims;
Access  problems.

''Window Frame'
Advantages:

High quality field;
No pole shim;
Symmetric & rigid;

Disadvantages:
Major access problems;
Insulation thickness 
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Typical pole designs
To  compensate  for  the  non-infinite  pole, shims are added at the 
pole edges. The area and shape of  the shims determine the 
amplitude of error harmonics which will be present.

A

A

Dipole: Quadrupole:

The designer optimises the pole 
by ‘predicting’ the field 
resulting from a given pole 
geometry and then adjusting it 
to give the required quality.

When high fields are present,
chamfer angles must be small, and 
tapering of poles may be  necessary 
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Design
Computer codes are now used to create a ‘model’ and 
and then predict the resulting field distribution; 
eg the Vector Fields codes -‘OPERA 2D’ and ‘TOSCA’ (3D).
These have:

• finite elements with variable triangular mesh;
• multiple iterations to simulate steel non-linearity;
• extensive pre and post processors;
• compatibility with many platforms and P.C. o.s.

Technique is iterative:
• calculate flux distribution of a defined geometry;
• adjust until required distribution is achieved.
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Design Procedures – OPERA 2D.

Pre-processor:
The model is set-up in 2D using a GUI (graphics user’s 
user’s interface) to define ‘regions’:

• steel regions;
• coils (including current density);
• a ‘background’ region which defines the physical 

physical extent of the model;
• the symmetry constraints on the boundaries;
• the permeability for the steel (or use the pre-

programmed curve);
• mesh is generated and data saved.
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Model of Diamond s.r. dipole
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With mesh added
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‘Close-up’ of pole region.
Pole profile, showing shim and edge roll-off for the 
Diamond 1.4 T dipole.:
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Diamond quadrupole model

Note – one eighth of quadrupole could be used with opposite symmetries 
defined on horizontal and y = x axis.
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Calculation.

Data Processor:
either:

• linear;    which uses a predefined constant permeability for a 
for a single calculation,  or

• non-linear;    which is iterative, with steel permeability set 
set according to B at each mesh point in steel, as calculated on
calculated on the previous iteration.
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Data Display – OPERA 2D.
Post-processor:
uses pre-processor model for many options for 
displaying field amplitude and quality:

• field lines;
• graphs;
• contours;
• gradients;
• harmonics (from a Fourier analysis around a pre-defined 

defined circle).
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2 D Dipole field homogeneity on x axis

Diamond s.r. dipole: ΔB/B = {By(x)- B(0,0)}/B(0,0); 
typically ± 1:104 within the ‘good field region’ of -12mm ≤ x ≤ +12 mm..
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2 D Flux density distribution in a dipole.
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2 D Dipole field homogeneity in gap
Transverse 
(x,y) plane in 
Diamond s.r. 
dipole;

contours are 
±0.01%

required good 
field region:
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2 D Assessment of quadrupole gradient quality

-0.1

-0.05

0

0.05

0.1

0 4 8 12 16 20 24 28 32 36

x (mm)

Δ
 d

H
y/

dx
 (%

)

y = 0 y = 4 mm y = 8 mm y = 12 mm y = 16 mm

Diamond 
WM 
quadrupole:

graph is 
percentage
variation in 
dBy/dx vs x 
at different 
values of y.

Gradient 
quality is to 
be ± 0.1 % or 
better to x = 
36 mm.
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Assessing results

A simple judgement of field quality is given by plotting:

•Dipole: {By (x) - By (0)}/BY (0)    (ΔB(x)/B(0))
•Quad: dBy (x)/dx (Δg(x)/g(0))
•6poles: d2By(x)/dx2 (Δg2(x)/g2(0))

‘Typical’ acceptable variation inside ‘good field’ region:

ΔB(x)/B(0) ≤ 0.01%
Δg(x)/g(0) ≤ 0.1%
Δg2(x)/g2(0) ≤ 1.0%
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Harmonics indicate magnet quality
The amplitude and phase of the harmonic components 
components in a magnet provide an assessment:

•when accelerator physicists are calculating beam behaviour in 
behaviour in a lattice;

•when designs are judged for suitability;
•when the manufactured magnet is measured;
•to judge acceptability of a manufactured magnet.

Note that harmonic amplitude and phases are provide by many 
many modelling codes – and they relate directly to 
measurements.
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Modern measurement techniques.
Magnets are now measured using rotating coil systems; 
systems; suitable for straight dipoles and multi-poles 
poles (quadrupoles and sextupoles).
This equipment and technique provides:

•amplitude;
•phase;

of each harmonic present, up to n ~ 30;
and:

•magnetic centre (x and y);
•angular alignment (roll, pitch and yaw).
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Rotating coil configurations
Multiple windings, rotating about the centre, with different radii 
radii (r) and numbers of turns (n) are combined to cancel out 
out some harmonics, - greater sensitivity to others:

3r/4

+n-n +n-n -2n+2n-n

r/4

+n

Detects all 
harmonics

Detects all odd 
harmonics, 1,3,5 

etc.

Dipole and 
quadrupole 

rejected.

ω
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Mode of operation
Rotation and data processing:
• windings are hard wired to detection equipment and cylinders 

cylinders will make ~2 revolutions in total;
• an angular encoder is mounted on the rotation shaft;
• the output voltage is converted to frequency and integrated 

integrated w.r.t. angle, so eliminating any ∂/∂t effects;
• integrated signal is Fourier analysed digitally, giving 

harmonic amplitudes and phases.

Specification: relative accuracy of integrated field ±3x10-4;
angular phase accuracy ±0.2 mrad;
lateral positioning of magnet centre ±0.03 mm;
accuracy of multipole components ±3x10-4
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Data output
Data output from the computer is a complete 
summary of magnet parameters:

•phase and amplitude of all harmonics;

•position of magnetic centre in both planes;

•angle error along the three axies of rotation;

Advanced systems (eg the CERN LEP measurement 
system) also automatically adjust the magnet positions and 
angles with respect to a base plate.
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Rotating coil system measuring Diamond Quad.
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Correction of DIAMOND Quadrupoles
This rapid and accurate measurement system allowed 
allowed the manufacturer to adjust the magnets to 
to substantially reduce the harmonics resulting from 
from assembly errors.

Meeting the requirements for quadrupole quality!
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Test data used to judge Diamond quads.
Validity This template is current Midplane adjustment Next actions (Refer first):
Iteration No. 1 (+ to open) DLS referral done? (Yes/No/NA) yes
Magnet type identifier WM East (um): 240 Reject/Hold for refer? (S4, C6+)
Magnet serial WMZ086 West (um): 80 Adjust vertical split (S3)? Yes

Top (um): 80 Adjust midplane (C3/C4)? Yes
Bottom (um:) 0 Full align?

Date of test 12/07/2005 C3 switch 1 Adjust dx only?
Tester Darren Cox S3 switch 1 Accept magnet?
Comments: 180A preliminary C4 switch 1
DLS comments: Please insert comments here S4++ switch 1
Dipole+NS007 reference angle 137.89068 (update fortnightly) Full switch 1
Adjusted dipole reference angle 137.90085 dx switch 1
Field quality data Post-shim Alignment data Value Outcome

prediction [good pass/pass]
R(ref) (mm) 35.00 dx [0.025/0.05]mm -0.089 Fail
Current (A) 180.00 dy [0.025/0.05]mm -0.059 Fail
Central strength (T/m) 17.6328 DLS OK? dz [2.5/5.0]mm 2.414 Good pass
L(eff) (mm) 407.253 ?Yes/No? Roll [0.1/0.2]mrad 0.052 Good pass
C3 (4-8) -0.49 Pass No -0.49 Yaw [0.15/0.3]mrad -0.048 Good pass
S3 (6-12) -10.88 Refer, or shim vertical No -2.33 Pitch [0.15/0.3]mrad -0.085 Good pass
C4 (4-7) 6.90 Refer, or shim horizontal No -2.64
S4 (1-4) 0.80 Pass No -0.04 Adjust X alone?
C6 (2.5-10) 7.97 Refer to DLS yes Alignment OK?
|C10,S10|: (N:3-5, W:6-8) 5.16 Pass No
All other terms up to 20 (2.5-5) 4.98 Refer to DLS yes

Keys to use N key S key NW foot NE foot SW foot SE foot
Next shims to use (rounded) N/A N/A N/A N/A N/A N/A
Shimming History
Iteration# N key S key NW foot NE foot SW foot SE foot

Shims in use 32.010 32.012 19.011 19.020 19.004 19.015
Next shims (measured) 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000

Rounding errors 0.000 0.000 0.000 0.000 0.000 0.000
Warnings
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