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Overview
• DC versus RF

– Basic equations: Lorentz & Maxwell, RF breakdown
• Some theory: from waveguide to pillbox

– rectangular waveguide, waveguide dispersion, standing waves … waveguide 
resonators, round waveguides, Pillbox cavity

• Accelerating gap
– Induction cell, ferrite cavity, drift tube linac, transit time factor

• Characterizing a cavity
– resonance frequency, shunt impedance, 
– beam loading, loss factor, RF to beam efficiency,
– transverse effects, Panofsky-Wenzel, higher order modes, PS 80 MHz cavity 

(magnetic coupling)
• More examples of cavities

– PEP II, LEP cavities, PS 40 MHz cavity (electric coupling), 
• RF Power sources
• Many gaps

– Why?
– Example: side coupled linac, LIBO

• Travelling wave structures
– Brillouin diagram, iris loaded structure, waveguide coupling

• Superconducting Accelerators
• RFQ’s
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DC accelerator

RF accelerator

DC versus RF

potential 
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Lorentz force
A charged particle moving with velocity     through an 
electro-magnetic field experiences a force
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Maxwell’s equations (in vacuum)
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Maxwell’s equation in vacuum (contd.)
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Another reason for RF: breakdown limit in vacuum,
Cu surface,
room temperature

f in GHz, Ec in MV/m
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Some theory: 
from waveguide to pillbox
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2 superimposed plane waves

E
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Waveguides

Fundamental (TE10 or H10) mode
in a standard rectangular waveguide.
E.g. forward wave

electric field

magnetic field
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Waveguide dispersion

e.g.: TE10-wave in 
rectangular 
waveguide:
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Waveguide dispersion (continued)
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General waveguide equations:
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Rectangular waveguide : transverse eigenfunctions

TM (E) modes:

TE (H) modes:
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Round waveguide : transverse eigenfunctions

TE (H) modes:

TM (E) modes:
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Standing wave – resonator

Same as above, but two
counter-running waves 
of identical amplitude.

electric field

magnetic field
(90º out of phase)
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TE11: fundamental mode

mm/
85.87

GHz a
fc =

mm/
74.114

GHz a
fc =

TE01: lowest losses!

mm/
74.334

GHz a
fc =

Round waveguide

TM01: axial electric field

E
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B
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parameters used in calculation: 
f = 1.43, 1.09, 1.13 fc , a: radius
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Pillbox cavity

electric field magnetic field

(only 1/8 shown)TM010-mode
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Pillbox cavity field (w/o beam tube)
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dielectric guide – transversely damped wave

There is another solution to                                    :222
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Accelerating gap
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Accelerating gap

gap voltage

• We want a voltage across the gap!

• The limit can be extended with a material which 
acts as “open circuit”!

• Materials typically used:
– ferrites (depending on f-range)
– magnetic alloys (MA) like Metglas®, Finemet®, 

Vitrovac®…

• resonantly driven with RF (ferrite loaded cavities)  
– or with pulses (induction cell)
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t
BsE

r
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d
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dd

• It cannot be DC, since we want the beam tube on 
ground potential.

• Use 

• The “shield” imposes a
– upper limit of the voltage pulse duration or        –

equivalently –
– a lower limit to the usable frequency.
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Linear induction accelerator
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compare: transformer, 
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Acc. voltage during B

ramp.
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Ferrite cavity

PS Booster, ‘98
0.6 – 1.8 MHz,
< 10 kV gap
NiZn ferrites
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Gap of PS cavity (prototype)
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Drift Tube Linac (DTL) – how it works

For slow particles –
protons @ few MeV e.g. 
– the drift tube lengths
can easily be adapted.

electric field
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Drift tube linac – practical implementations
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Transit time factor

If the gap is small, the voltage              is small.∫ zEzd
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If the gap large, the RF field varies notably while the particle passes.

Define the accelerating voltage ∫= zeEV
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c
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Example pillbox:
transit time factor vs. h
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Characterizing a cavity
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Cavity resonator – equivalent circuit

RR/β

Cavity

Generator

IG

P

Vgap

C=Q/(Rω0)

Beam

IB

L=R/(Qω0)LC

β: coupling factor

R: Shunt impedance C
L : R-upon-Q

Simplification: single mode
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Resonance
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Reentrant cavity

Example: KEK photon factory 500 MHz         
- R as good as it gets -

this cavity optimized
pillbox

R/Q: 111 Ω 107.5 Ω
Q: 44270 41630
R: 4.9 MΩ 4.47 MΩ

nose cone

Nose cones increase transit time factor,  round outer shape minimizes losses.
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Loss factor
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Summary: relations Vgap, W, Ploss

Energy stored inside 
the cavity Power lost in the cavity 

walls

gap voltage

loss

gap
shunt P
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Beam loading – RF to beam efficiency

• The beam current “loads” the generator, in the 
equivalent circuit this appears as a resistance in 
parallel to the shunt impedance.

• If the generator is matched to the unloaded 
cavity, beam loading will cause the accelerating 
voltage to decrease.

• The power absorbed by the beam is                       , 

the power loss                 .

• For high efficiency, beam loading shall be high. 
• The RF to beam efficiency is                             .
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Characterizing cavities
• Resonance frequency

• Transit time factor
field varies while particle is traversing the gap

• Shunt impedance
gap voltage – power relation

• Q factor

• R/Q
independent of losses – only geometry!

• loss factor
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Example Pillbox:
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Higher order modes

IB

R3, Q3,ω3R1, Q1,ω1 R2, Q2,ω2

......

external dampers

n1 n3n2
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Higher order modes (measured spectrum)

without dampers

with dampers
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Pillbox: Dipole mode

electric field (@ 0º) magnetic field (@ 90º)

(only 1/8 shown)(TM110)
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Panofsky-Wenzel theorem

||j FF
c ⊥⊥ ∇=
rω

For particles moving virtually at v=c, the integrated 
transverse force (kick) can be determined from the 
transverse variation of the integrated longitudinal 
force!

W.K.H. Panofsky, W.A. Wenzel: “Some Considerations Concerning the Transverse Deflection of Charged 
Particles in Radio-Frequency Fields”, RSI 27, 1957]

Pure TE modes: No net transverse force !

Transverse modes are characterized by
• the transverse impedance in ω-domain
• the transverse loss factor (kick factor) in t-domain !
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CERN/PS 80 MHz cavity (for LHC)

inductive (loop) coupling, low self-inductance
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Example shown:
80 MHz cavity 
PS for LHC.
Color-coded:

Higher 
order 
modes

E
r
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More examples of cavities
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PS 19 MHz cavity (prototype, photo: 1966)
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Examples of cavities

PEP II cavity
476 MHz, single cell,

1 MV gap with 150 kW, 
strong HOM damping,

LEP normal-conducting Cu RF cavities,
350 MHz. 5 cell standing wave + spherical 
cavity for energy storage, 3 MV
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example for 
capacitive 
coupling

cavity

coupling C

CERN/PS 40 MHz cavity (for LHC)
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RF power sources
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RF Power sources

Thales TH1801, Multi-Beam Klystron (MBK), 1.3 
GHz, 117 kV. Achieved: 
48 dB gain, 10 MW peak, 150 kW average, η = 65 %

> 200 MHz: Klystrons

Tetrode                IOT               UHF Diacrode

< 1000 MHz: grid tubes

pictures from http://www.thales-electrondevices.com

dB: 8.410=
rinput powe
eroutput pow
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RF power sources

Typical ranges (commercially available)
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Example of a tetrode amplifier (80 MHz, CERN/PS)

22 kV DC anode voltage feed-through 
with λ/4 stub

18 Ω coaxial output (towards cavity)

coaxial input matching circuit

tetrode cooling water feed-throughs

400 kW, with fast RF feedback
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Many gaps
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What do you gain with many gaps?

( )PnR
n
PRnVacc 22 ==

• The R/Q of a single gap cavity is limited to some 100 Ω.
Now consider to distribute the available power to n
identical cavities: each will receive P/n, thus produce an 
accelerating voltage of              .
The total accelerating voltage thus increased, 
equivalent to a total equivalent shunt impedance of      . 

nPR2

nR

1 2 3 n

P/nP/n P/nP/n
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Standing wave multicell cavity
• Instead of distributing the power from the amplifier, 

one might as well couple the cavities, such that the 
power automatically distributes, or have a cavity with 
many gaps (e.g. drift tube linac). 

• Coupled cavity accelerating structure (side coupled)

• The phase relation between gaps is important!
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A 3 GHz Side Coupled 
Structure to accelerate 
protons out of cyclotrons 
from 62 MeV to 200 MeV

Medical application:
treatment of tumours.

Prototype of Module 1
built at CERN (2000)

Collaboration CERN/INFN/
Tera Foundation 

An example of Side Coupled Structure :
LIBO (= Linac Booster)
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LIBO prototype

This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)
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Travelling wave structures
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Brillouin diagram 
Travelling wave 

structure

synchronous

ω L/c

speed of light line, 
ω = β /c

π

π/2

ππ/2 β L0

2π

0

π/2

π

2π/3



CAS Daresbury '07  — RF Cavity Design 58

Iris loaded waveguide

1 cm

30 GHz structure (CLIC)

11.4 GHz structure (NLC)
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Disc loaded structure with strong HOM damping
“choke mode cavity”

Dimensions in mm
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Waveguide coupling ¼ geometry shown
Input coupler

Output coupler

Travelling wave structure
(CTF3 drive beam, 3 GHz)

shown: Re {Poynting vector} 
(power density)
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3 GHz Accelerating structure (CTF3)
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Superconducting Linacs
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LEP Superconducting cavities

10.2 MV/ per cavity

LEP was not a linac, but still …
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LHC SC RF, 4 cavity module, 400 MHz
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Small β superconducting cavities (example RIA, Argonne)

345 MHz β = 0.4 spoke cavity

pictures from Shepard et al.: “Superconducting accelerating structures for a multi-beam driver linac for RIA”, Linac 2000, Monterey

115 MHz split-ring cavity, 172.5 MHz β = 0.19 “lollipop” cavity

β = 0.021 fork cavity

57.5 MHz cavities:

β = 0.03 fork cavity

β= 0.06 QWR
(quarter wave resonator)
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More superconducting cavities for linacs 
with β < 1 (proton driver – heavy ion)

Need to standardise construction of cavities:
only few different types of cavities are made for some β’s
more cavities are grouped in cryostats

Example:
CERN design, SC linac 120 - 2200 MeV
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ILC high gradient SC Linac at 1.3 GHz
ILC 9-cell Niobium cavity

More on the ILC at 

Technology has made big progress, > 40 MV/m 
accelerating gradient have been obtained.
The plot below illustrates the effect of 
“buffered chemical polishing” and “electro-
polishing”.

http://www.linearcollider.org/cms/

http://www.linearcollider.org/cms/
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RFQ’s
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Old preinjector 750 kV DC , CERN Linac 2 before 1990

All this was replaced by the RFQ …
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RFQ of CERN Linac 2
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The Radio Frequency Quadrupole (RFQ)

Minimum Energy of a DTL: 500 keV (low duty) - 5 MeV (high duty)
At low energy / high current we need strong focalisation
Magnetic focusing (proportional to β) is inefficient at low energy. 
Solution (Kapchinski, 70’s, first realised at LANL):

Electric quadrupole focusing + bunching + acceleration
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RFQ electrode modulation

The electrode modulation creates a longitudinal field component that creates the
“bunches” and accelerates the beam.
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A look inside CERN AD’s “RFQD”
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