SELF FIELDS AND WAKE FIELDS

There is another important source of e.m. fields: the beam itself.

- Direct self fields
- Image self fields
- Wake fields
- Space Charge
\(\gamma = \frac{1}{\sqrt{1-\beta^2}} \)

\[
\vec{E} = \frac{q}{4\pi \varepsilon_0} \frac{(1-\beta^2)}{(1-\beta^2 \sin^2 \theta)^{3/2}} \frac{\vec{r}}{r^3}
\]

\(\beta = 0 \Rightarrow \vec{E} = \frac{q}{4\pi \varepsilon_0} \frac{\vec{r}}{r^3} \)

\(\theta = 0 \Rightarrow E_\parallel = \frac{1}{\gamma^2} \frac{q}{4\pi \varepsilon_0} \frac{\vec{r}}{r^3} \gamma \to \infty \to 0 \)

\(\theta = \frac{\pi}{2} \Rightarrow E_\perp = \gamma \frac{q}{4\pi \varepsilon_0} \frac{\vec{r}}{r^3} \gamma \to \infty \to \infty \)
Bunched beam - Circular Perfectly Conducting Pipe

- Beam at Center - Static Approximation $\gamma \rightarrow \infty$

\[\rho = \frac{I}{\pi a^2 v} \]

\[2 \pi r l \varepsilon_o E_r = \rho \pi r^2 l \]

\[2 \pi r l \varepsilon_o E_r = \rho \pi a^2 l \]

\[E_r = \frac{I}{2 \pi \varepsilon_o a^2 v} r \quad \text{for} \quad r \leq a \]

\[E_r = \frac{I}{2 \pi \varepsilon_o v} \frac{1}{r} \quad \text{for} \quad r > a \]

\[\phi(r) = \int_r^b E_r(r')dr' \]

\[= \frac{I}{4 \pi \varepsilon_o v} \left(1 + 2 \ln \frac{b}{a} - \frac{r^2}{a^2} \right) \quad \text{for} \quad r \leq a \]

\[= \frac{I}{2 \pi \varepsilon_o v} \ln \frac{b}{r} \quad \text{for} \quad a \leq r \leq b \]

\[\phi(b) = 0 \]

\[B_g = \frac{\beta}{c} E_r \]
Circular Perfectly Conducting Pipe with Transition

There is a longitudinal $E_z(r,z)$ field in the transition and a test particle experience a voltage given by:

$$V = -\int_0^L E_z(r,z) dz = -(\varphi(r,L) - \varphi(r,0)) = -\frac{I}{2\pi\varepsilon_0 v} \ln \frac{d}{b}$$

decelerating if $d > b$

$$P_b = VI = \frac{I^2}{2\pi\varepsilon_0 v} \ln \frac{d}{b}$$

Power lost by the beam
For \(d > b \) the power is deposited to the energy of the fields: moving from left to right the beam induces the fields in the additional space available.

\[
P_{em} = \frac{1}{\mu} \left(\frac{E \times B}{\mu} \right) \cdot \hat{n} dS = \int_b^d \frac{E_r B_\theta}{\mu} 2\pi r dr = \frac{I^2}{2\pi \varepsilon_0} \frac{ln \frac{d}{b}}{b}
\]

The additional power passing through the right part of the beam pipe is obtained by integrating the Poynting vector through the source

\[
\Delta S = \pi (d^2 - b^2)
\]

Notice that if \(d < b \) the beam gains energy. If \(d \rightarrow \infty \) the power goes to infinity, such an unphysical result is nevertheless consistent with the original assumption of an infinite energy beam \((\gamma \rightarrow \infty)\).
Short Range Wake Fields

\[\Delta t_b \ll \tau = \frac{2Q}{\omega} \]

Long Range Wake Fields

\[\Delta t_b \gg \tau = \frac{2Q}{\omega} \]

\[\tau \begin{cases} \mu s \Rightarrow \text{Normal Conducting Cavities} \\ ms \Rightarrow \text{Superconducting Cavities} \end{cases} \]
Let E and H be written in terms of the cavity field functions $\{e_\nu, h_\nu\}$ within a volume V as follows:

$$E(x,y,z,t) = \sum_\nu a_\nu(t)e_\nu(x,y,z)e^{j\omega_\nu t}$$ \hspace{1cm} (4)$$

where $\{e_\nu, h_\nu\}$ must satisfy the following equations:

$$[\nabla^2 + k_\nu^2]e_\nu = 0 \quad \text{=> EQUATION SOLVED BY SUPERFISH}$$ \hspace{1cm} (5)$$

within a volume V, where $k_\nu = \omega_\nu/c$.

and the boundary conditions are (EM over a surface S and MM over another surface S'):

$$n \times e_\nu = 0 \quad \text{over } S \quad \quad \quad \quad \quad \quad \quad n \times h_\nu = 0 \quad \text{over } S'$$ \hspace{1cm} (7a)$$
$$n \cdot h_\nu = 0 \quad \text{over } S \quad \quad \quad \quad \quad \quad \quad n \cdot e_\nu = 0 \quad \text{over } S'$$ \hspace{1cm} (7b)$$

where n is a unit vector pointing outwards from the cavity surface. The normalization conditions are:

$$\int_V e_\nu^* e_\mu \, dv = \delta_{\nu\mu}$$ \hspace{1cm} (8)$$
and the coefficients $a_\nu(t), b_\nu(t)$ in eq. (4) are given by:

$$a_\nu = \int_V E \cdot e_\nu^* \, dv$$ \hspace{1cm} (9)

From Maxwell's equations we have:

$$\nabla \times e_\nu = k_\nu b_\nu$$ \hspace{1cm} (10)

and the average stored energy is:

$$\overline{U} = \frac{1}{2} \varepsilon \sum \left| a_\nu \right|^2 = \frac{1}{2} \mu \sum \left| b_\nu \right|^2$$ \hspace{1cm} (11)

From the wave equation

$$\nabla^2 E - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = \mu \frac{\partial J}{\partial t}$$ \hspace{1cm} (12)

we obtain for each component of the field amplitude the following relationship:

$$\frac{1}{c^2} \frac{d^2 a_\nu}{dt^2} + k_\nu^2 a_\nu = -\mu \frac{d}{dt} \int_V (J \cdot e_\nu^*) \, dv$$ \hspace{1cm} (13)
\[
\frac{d\gamma}{dt} = -\frac{e}{mc} \vec{E} \cdot \vec{\beta} = -\frac{e}{mc} E_\perp \beta_\perp - \frac{e}{mc} E_\parallel \beta_\parallel
\]

<table>
<thead>
<tr>
<th>Wave Type</th>
<th>TM\textsubscript{01}</th>
<th>TM\textsubscript{02}</th>
<th>TM\textsubscript{11}</th>
<th>TE\textsubscript{01}</th>
<th>TE\textsubscript{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field distributions in cross-sectional plane, at plane of maximum transverse fields</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>Field distributions along guide</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>Field components present</td>
<td>E_z, E_r, H_ϕ</td>
<td>E_z, E_r, H_ϕ</td>
<td>$E_z, E_r, E_\phi, H_r, H_\phi$</td>
<td>H_z, H_r, E_ϕ</td>
<td>$H_z, H_r, H_\phi, E_r, E_\phi$</td>
</tr>
<tr>
<td>Mode</td>
<td>(f) [MHz]</td>
<td>((R/Q)^*) [(\Omega/cm^2)]</td>
<td>(Q_{ext})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M: TM010-9</td>
<td>1300.00</td>
<td>1161</td>
<td>(8 \times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TE111-7a</td>
<td>1717.15</td>
<td>5.0</td>
<td>(4 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TE111-7b</td>
<td>1717.21</td>
<td>5.0</td>
<td>(5 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TE111-8a</td>
<td>1738.12</td>
<td>3.0</td>
<td>(6 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TE111-8b</td>
<td>1738.15</td>
<td>3.0</td>
<td>(8 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-2a</td>
<td>1882.15</td>
<td>3.4</td>
<td>(6 \times 10^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-2b</td>
<td>1882.47</td>
<td>3.4</td>
<td>(6 \times 10^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-4a</td>
<td>1912.04</td>
<td>4.6</td>
<td>(9 \times 10^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-4b</td>
<td>1912.21</td>
<td>4.6</td>
<td>(1 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-5a</td>
<td>1927.10</td>
<td>15.6</td>
<td>(1.5 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-5b</td>
<td>1927.16</td>
<td>15.6</td>
<td>(1.5 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-6a</td>
<td>1940.25</td>
<td>12.1</td>
<td>(2 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: TM110-6b</td>
<td>1940.27</td>
<td>12.1</td>
<td>(2 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M: TM011-6</td>
<td>2177.48</td>
<td>192</td>
<td>(10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M: TM011-7</td>
<td>2182.81</td>
<td>199</td>
<td>(10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 3-rd-1a</td>
<td>2451.07</td>
<td>31.6</td>
<td>(1 \times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 3-rd-1b</td>
<td>2451.15</td>
<td>31.6</td>
<td>(2 \times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 3-rd 1-2a</td>
<td>2457.04</td>
<td>22.2</td>
<td>(5 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 3-rd 1-2b</td>
<td>2457.09</td>
<td>22.2</td>
<td>(5 \times 10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 5-th – 7a</td>
<td>3057.43</td>
<td>0.5</td>
<td>(3 \times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 5-th – 7b</td>
<td>3057.45</td>
<td>0.5</td>
<td>(3 \times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 5-th – 8a</td>
<td>3060.83</td>
<td>0.4</td>
<td>(8 \times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: 5-th – 8b</td>
<td>3060.88</td>
<td>0.4</td>
<td>(9 \times 10^5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example of two dipoles overlapping modeling in the TESLA cavity with Omega3P
"Choke Mode Cavity"
The study of the fields requires to solve the Maxwell equations in a given structure taking the beam current as source of fields. This is a quite complicated task for which it has been necessary to develop dedicated computer codes, which solve the e.m. problem in the frequency or in the time domain. There are several useful codes for the design of accelerator devices: **MAFIA, ABCI, URMEL**, etc...

The parasitic fields depends on the particular charge distribution of the beam. It is therefore desirable to know what is the effect of a single charge, i.e. **find the Green function** w, in order to reconstruct the fields produced by any charge distribution.
Scattered Field

The image charges travel with the same particle velocity v. Since both the particles and the image charges move on parallel paths, in the limit $v = c$ they do not interact with each other, no matter how close to the wall the particles are.

FIGURE 2. Particles traveling inside a perfectly conducting pipe of arbitrary cross section. Shown are the image charges on the wall generated by the leading charge.
If a particle moves along a straight line with the speed of light, the electromagnetic field of this particle scattered off the boundary discontinuities will not overtake it and, furthermore, will not affect the charges that travel ahead of it.

The field can interact only with the trailing charges in the beam that move behind it. This constitutes the principle of causality in the theory of wake fields.

FIGURE 3. A wall discontinuity located at $z = 0$ scatters the electromagnetic field of an ultrarelativistic particle. When the particle moves to location z, the scattered field arrives to point $z - s$.
We can estimate the distance at which the electromagnetic field produced by a leading charge reaches a trailing particle traveling at a distance s behind.

$$ct = \sqrt{(z - s)^2 + b^2}$$

$$z^2 = (z - s)^2 + b^2 \implies z_{\text{catch-up}} \approx \frac{b^2}{2s} \quad \text{for } s << b$$

Only after the leading charge has traveled $z_{\text{catch-up}}$ away from the discontinuity, can a particle at point s behind it feel the field generated by the discontinuity.
there can be two effects on the test charge:

1) a longitudinal force which changes its energy,
2) a transverse force which deflects its trajectory.

\[F = q \left[E_x \hat{x} + \left(E_y - vB_z \right) \hat{y} \right] \equiv F_{//} + F_{\perp} \]
If we consider a device of length L:

the Energy Gain is:

$$U = \int_{0}^{L} F_z ds$$

the Transverse Deflecting Kick is:

$$M = \int_{0}^{L} F_\perp ds$$

These quantities, normalised to the charges, are called *wake-potentials* (volt/coulomb) and are both function of the distance z.

Note that the integration is performed over a given path of the trajectory.
Longitudinal wake potential
(Volt/Coulomb)

\[w_\parallel = - \frac{U}{q_o q} \]

Transverse wake potential
(Volt/Coulomb meter)

\[w_\perp = \frac{1}{r_o} \frac{M}{q_o q} \]

The sign minus in the longitudinal wake-potential means that the test charge loses energy when the wake is positive.

Positive transverse wake means that the transverse force is defocusing.
Longitudinal wake potential of a resonant HOM

When a charge crosses a resonant structure, it excites the fundamental mode and high order modes (HOM). Each mode can be treated as an electric RLC circuit loaded by an impulsive current.

Just after the charge passage, the capacitor is charged with a voltage $V_o = C q_o$ and the electric field is $E_{so} = \frac{V_o}{l_o}$.

The time evolution of the electric field is governed by the same differential equation of the voltage

$$\dddot{V} + \frac{1}{RC} \dddot{V} + \frac{1}{LC} V = \frac{1}{C} \dot{I}$$
The passage of the impulsive current charges only the capacitor, which changes its potential by an amount \(V_c(0) \).

This potential will oscillate and decay producing a current flow in the resistor and inductance.

For \(t>0 \) the potential satisfy the following equation and initial conditions:

\[
\dddot{V} + \frac{1}{RC} \ddot{V} + \frac{1}{LC} V = 0
\]

\[
V(t = 0^+) = \frac{q}{C} = V_0
\]

\[
\dot{V}(t = 0^+) = \frac{\dot{q}}{C} = \frac{I(0^+)}{C} = \frac{V_0}{RC}
\]

Putting \(z = -ct \) (\(z \) is negative behind the charge),

\[
w_{//}(z) = \frac{-V(z)}{q_o} = w_o e^{\gamma z/c} \left[\cos(\omega z/c) + \frac{\gamma}{\omega} \sin(\omega z/c) \right]
\]

\[
V(t) = V_0 e^{-\gamma t} \left[\cos(\bar{\omega} t) - \frac{\gamma}{\bar{\omega}} \sin(\bar{\omega} t) \right]
\]

\[
\bar{\omega}^2 = \omega_r^2 - \gamma^2 \quad 2\gamma = 1/RC \quad \omega_r^2 = 1/LC
\]
It is also useful to define the **loss factor** as the normalised energy lost by the source charge q_o

\[
k = - \frac{U(z = 0)}{q_o^2}
\]

Although in general the loss factor is given by the longitudinal wake at $z=0$, for charges travelling with the light velocity the longitudinal wake potential is discontinuous at $z=0$.

The exact relationship between k and $w(z=0)$ is given by the **beam loading theorem**:

\[
k = \frac{w_{\parallel}(z \to 0)}{2}
\]

Causality requires that the longitudinal wake potential of a charge travelling with the velocity of light is discontinuous at the origin.
\[U_o = -q^2 k \]

\[U_A = -q_A^2 k = -\frac{q^2}{4} k \]

\[U_B = -q_B^2 k - q_A q_B W_{\parallel} (z) = -\frac{q^2}{4} k - \frac{q^2}{4} W_{\parallel} (z) \]

\[U_A + U_B = -\frac{q^2}{2} k - \frac{q^2}{4} W_{\parallel} (z) \]

\[q^2 k = \frac{q^2}{2} k + \frac{q^2}{4} W_{\parallel} (0) \]

\[k = \frac{W_{\parallel} (0)}{2} \]
Longitudinal Wakefields of RF Structures

SLAC S-band:
- $a = 11.6$ mm
- $\gamma = 29.2$ mm
- $p = 35.0$ mm

$s_0 \approx 0.41 \frac{a^{1.8} \gamma^{1.6}}{p^{2.4}}$

$W_{\parallel} \propto \omega^2$

$W(z) \approx \frac{Z_0 c}{\pi a^2} e^{-\sqrt{z/s_0}}$

K. Bane

point-charge wake function

fit
Transverse Wakefields

\[W_x(z) \approx A \frac{4Z_0cs_1}{\pi a^4} \left[1 - (1 + \sqrt{z/s_1})e^{-\sqrt{z/s_1}} \right] , \quad z < 6 \text{ mm} \]
Wake potentials and energy loss of a bunched distribution

When we have a bunch with density $\lambda(z)$, we may wonder what is the amount of energy lost or gained by a single charge e in the beam.

To this end we calculate the effect on the charge from the whole bunch by means of the convolution integral:

$$U(z) = -e \int_{-\infty}^{\infty} w_r(z-z') \lambda(z') dz'$$

Which permits to define the *wake potential of a distribution*

$$W_r(z) = -\frac{U(z)}{qq_o}$$

The total energy lost by the bunch is computed summing up the loss of all particles:

$$U_{\text{bunch}} = -\frac{1}{e} \int_{-\infty}^{\infty} U(z') \lambda(z') dz'$$
Fig. 5 Energy profile within the bunch sitting on the crest of the rf wave

Fig. 6 Energy profile within the bunch after optimization of the rf phase
Short Range Wake Fields Effects in Linear Accelerators
The HOMDYN Model

On Axis

Δt

Direct Space Charge
Longitudinal Wake Field

External Fields

Off Axis

Δt

Longitudinal and Transverse Wake Field

http://www.lnf.infn.it/acceleratori/sparc/hsparxino5.zip
Beam Break Up

A beam injected off-center in a LINAC, because of the focusing quadrupoles, execute betatron oscillations. The displacement produces a transverse wake field in all the devices crossed during the flight, which deflects the trailing charges.

Figure 3.4. Four transverse beam profiles observed at the end of the SLAC linac are shown when the beam was carefully injected and injected with 0.2, 0.5, and 1 mm offsets. The beam sizes σ_x and σ_y are about 120 μm. (Courtesy John Seeman, 1991.)
In order to understand the effect, we consider a simple model with only two charges \(q_1 = Ne/2 \) (leading = half bunch) and \(q_2 = e \) (trailing = single charge).

\[
q_1 = Ne/2 \quad \text{and} \quad q_2 = e
\]

the leading charge executes free betatron oscillations:

\[
y_1(s) = \hat{y}_1 \cos \left(\frac{\omega_y}{c} s \right); \quad \frac{\omega_y}{c} = \frac{2\pi}{\lambda_w}
\]
the trailing charge, at a distance \(z \) behind, over a length \(L_w \) experiences a deflecting force proportional to the displacement \(y_1 \), and dependent on the distance \(z \):

\[
\left\langle F_{y}^{\text{self}}(z,y_1) \right\rangle = \frac{Ne^2}{2L_w} w_{\perp}(z)y_1(s)
\]

This force drives the motion of the trailing charge:

\[
y_2'' + \left(\frac{\omega_y}{c} \right)^2 y_2 = \frac{Ne^2 w_{\perp}(z)}{2E_o L_w} \hat{y}_1 \cos\left(\frac{\omega_y}{c} s \right)
\]

This is the typical equation of a resonator driven at the resonant frequency. The solution is given by the superposition of the “free” oscillation and a “forced” oscillation which, being driven at the resonant frequency, grows linearly with \(s \).
At the end of the LINAC of length L_L, the oscillation amplitude is grown by:

$$y_2(s) = \hat{y}_2 \cos\left(\frac{\omega_y}{c} s\right) + y_2^{\text{forced}}$$

$$y_2^{\text{forced}} = \frac{cN e^2 w(z)s}{4\omega_y E_o L_w} \hat{y}_1 \sin\left(\frac{\omega_y}{c} s\right)$$
Balakin-Novokhatsky-Smirnov Damping

The BBU instability is quite harmful and hard to take under control even at high energy with a strong focusing, and after a careful injection and steering.

A simple method to cure it has been proposed observing that the strong oscillation amplitude of the bunch tail is mainly due to the “resonant” driving.

If the tail and the head move with a different frequency, this effect can be significantly removed.

Let us assume that the tail oscillate with a frequency $\omega_y + \Delta \omega_y$, the equation of motion reads:

$$y'' + \left(\frac{\omega_y + \Delta \omega_y}{c}\right)^2 y = \frac{Ne^2 w_\perp(z)}{2E_0 L_w} \hat{y}_1 \cos\left(\frac{\omega_y}{c} s\right)$$
the solution of which is:

\[y_2^{\text{foced}}(s) = \frac{c^2 N \varepsilon^2 w_\perp(z)}{4 \omega_y \Delta \omega_y E_0 L_w} \hat{y}_L \left[\cos \left(\frac{\omega_y + \Delta \omega_y}{c} s \right) - \cos \left(\frac{\omega_y}{c} s \right) \right] \]

\[\Delta \omega_y \ll \omega_y \]
by a suitable choice of $\Delta \omega_y$, it is possible to fully depress the oscillations of the tail.

\[
\hat{y}_2 \cos \left(\frac{\omega_y + \Delta \omega_y}{c} s \right) + y_2^{\text{forced}}(s) = \hat{y}_1 \cos \left(\frac{\omega_y}{c} s \right)
\]

\[
\Delta \omega_y = \frac{c^2 N e^2 w(z)}{4 \omega_y E_o L_w}
\]

The extra focusing at the tail can be obtained by:

- Using a RFQ, where head and tail see a different focusing strength,
- Exploit the energy spread across the bunch which, because of the chromaticity, induces a spread in the betatron frequency. An energy spread correlated with the position is attainable with the external accelerating voltage, or with the wake fields.

A. Mosnier - *Instabilities il Linacs* - CAS (Advanced) - 1994

L. Palumbo, V. Vaccaro, M. Zobov - *Wakes fields and Impedance* - CAS (Advanced) - 1994

G. V. Stupakov - *Wake and Impedance* - SLAC-PUB-8683

M. Ferrario, M. Migliorati, L. Palumbo - *Wake Fields and Instabilities in Linacs* - CAS (Advanced) - 2005
THE END