
Sta$s$cal	
  Descrip$on	
  of	
  Par$cle	
  Beams
	
  Massimo.Ferrario@LNF.INFN.IT	
  

Introduc$on	
  to	
  Accelerator	
  Physics	
  -­‐	
  Constanta	
  –	
  17	
  	
  September	
  2018	
  



Configuration Space 
Trace Space 

Phase Space 

Typical coordinates to describe the particle motion 
(6 per particle)  
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Paraxial Ray Approximation 

In a locally Cartesian coordinate system,  we take the distance along 
the design trajectory to be z. The horizontal offset is designated by x  
and the horizontal angle is θx .  

paraxial rays => vector representations of the local trajectory which, 
by definition, have an angle with respect to a  design trajectory that is 
much smaller than unity.  
 
Trajectories of interest in beam physics are often paraxial: one must 
confine the beam inside of small, near-axis regions. 
 



Paraxial Ray Approximation 

The angle is given in terms of the momenta as: 
 
 
 
In order to use z  as the independent variable, we must be able to 
write equations of motion in terms of z: 

 The derivative of a horizontal offset with respect to z  is given by: 



Focusing systems often resemble simple harmonic oscillators, where 
the transverse force is linear in offset: 
 
And the equation of motion is: 
 
 
in terms of a ray description: 
 
 
The solutions are of the form:  
 
 
with an angle: 
 
the paraxial approximation is valid for offsets smaller than  the 
characteristic oscillation wavenumber. 

Example 

!x = −kxm sin kz +φ( ) <<1   ⇒  xm <<
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Trace space of an ideal beam 
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X 

X’ 

Trace space of a laminar beam 



X 

X’ 

Trace space of non laminar beam 



In a system where all the forces acting on the particles are linear (i.e., 
proportional to the particle’s displacement x from the beam axis), it is 
useful to assume an elliptical shape for the area occupied by the beam 
in x-x‘ trace space. 
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!!x + k2x = 0

è Emittance Concept 



Twiss parameters:
 12 =−αβγ

Ellipse equation:

Geometric emittance:
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εg

€ 

γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area:
 A = πεg

!β = −2α
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The slope of the beam envelope at point M: 
  
is the same as the slope of the particular ray defined by point M: 
 
 
By equating it follows that: 

!x M( ) = −α ε
β

!E =
!β
2

ε
β

!β = −2α





Trace space evolution

With space charge => no cross over





No space charge => cross over
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In charged particle beam dynamics, we are commonly not interested in the phase-
space location of individual particles, a statistical mechanics approach is 
appropriate using function f (x , p , t) 
 
The distribution function f  is viewed as a smooth probability function  in a 2M –
dimensional space f (x , p , t) 
 
 
 
 
 
 
 
 
 
 
 
The number of particles found in a differential volume dV =  d3x  d3p in the 
neighborhood of a location x , p  at a time t  is simply given by f (x , p , t) dV .  
 

Phase space evolution!

With space charge => no cross over




No space charge => cross over




 The total time derivative of the phase space distribution function is 

If the forces are derivable from a Hamiltonian, then 



This result is termed Liouville’ s theorem, and it states that the phase 
space density encountered as one travels with a particle in a Hamiltonian 
system is conserved => The phase space Volume is also conserved 

If neither creation nor destruction of the particles are allowed, we also 
have: 



The full distribution function contains all of the information needed 
to describe the state of a non-interacting ensemble of beam particles. 
 
One may not need all of this information, though, and so it is often 
the case that moments of the distribution  are used to arrive at a 
simpler description of the distribution’s evolution.  
 
These moments are formally written in the Trace Space  as 

where m  and n  are equal to zero or a positive integer, and the 
quantity m + nnis referred to as the order  of the moment. 



 The zeroth-order moment is simply the normalization condition on 
the distribution, 

 The first-order moments are the centroids  of the distribution 

 which vanish when a beam is simmetric to its design axis 



 The second moments are written in standard notation as the 
distribution variances, 



ADCATS 

Moments of a Distribution

•  First Moment: 
–  mean - measure of location 

•  Second Moment: 
–  standard deviation - measure of spread 

•  Third Moment: 
–  skewness - measure of symmetry 
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rms emittance 
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rms beam envelope: 
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γx2 + 2αx $ x + β $ x 2 = εrms

€ 

σ x = x2 = βεrms    

σ x' = % x 2 = γεrms

Define rms emittance: 

such that: 
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Since: 
 

it follows: 
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It holds also the relation: 

Substituting             we get 

€ 

α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

σ x ' = x '2 = γεrms

σ xx ' = x !x = −αεrms

€ 

" x =
px

pz



Which distribution has no correlations?
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x’ 

σ xx ' = x !x = −αεrms = 0?
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εrms
2 = x2 # x 2 − x # x 2

!x =Cxn

εrms
2 =C2 x2 x2n − xn+1

2( )
When n = 1   ==>   εrms = 0

When n = 1    ==>   εrms = 0
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x’

a

a’

What does rms emittance tell us about phase space distributions 
under linear or non-linear forces acting on the beam? 

Assuming a generic            correlation of the type: 
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x, " x 



Constant under linear transformation only


And without acceleration:


€ 

" x =
px

pz



εn,rms = σ x
2σ px

2 −σ xpx
2 =

1
moc

x2 px
2 − xpx

2( )

Normalized rms emittance:


px = pz !x =mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant. 

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz) 
provided that there are no couplings 

€ 

pz ≈ p

€ 

εn,rms



Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two 
conjugate variables (x,px). According to Heisenberg:  

This limitation can be expressed by saying that the state of a particle 
is not exactly represented by a point, but by a small uncertainty 
volume of the order of      in the 6D phase space. 
 
In particular for a single electron in 2D phase space it holds: 

σ xσ px
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   Where       is the reduced Compton wavelength. ! c



εn,rms =
1
moc

x2 px
2 − xpx

2( ) = x2 βγ "x( )2 − xβγ "x 2( ) = βγ εrms

Assuming small energy spread within the beam, the normalized and 
un-normalized emittances can be related by the above approximated 
relation.  

px = pz !x =mocβγ !x

This approximation that is often used in conventional accelerators 
may be strongly misleading when adopted to describe beams with 
significant energy spread, as the one at present produced by plasma 
accelerators.  

Normalized and un-normalized emittances  



When the correlations between the energy and transverse positions are 
negligible (as in a drift without collective effects) we can write:  

εn,rms
2 = β 2γ 2 x2 !x 2 − βγ

2 x !x 2

Considering now the definition of relative energy spread:  

σγ
2 =

β 2γ 2 − βγ
2

βγ
2

which can be inserted in the emittance definition to give:  

εn,rms
2 = β 2γ 2 σγ

2 x2 !x 2 + βγ
2 x2 !x 2 − x !x 2( )

Assuming relativistic particles (β=1) we get:  

εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
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It holds also the relation: 

Substituting             we get 

€ 

α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

!σ x = x '2 = γεrms

σ xx ' = x !x = −αεrms
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dσ x

dz
=
d
dz

x2 =
1
2σ x

d
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x2 =
1
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=
d
dz
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=
1
σ x

dσ x !x
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−
σ x !x
2

σ x
3 =

1
σ x

!x 2 + x !x( )−σ x !x
2

σ x
3 =

σ !x
2 + x !!x
σ x

−
σ x !x
2

σ x
3

Envelope Equation without Acceleration


Now take the derivatives: 

!!σ x =
σ x
2σ x '

2 −σ xx '
2

σ x
3 +

x !!x
σ x

=
εrms
2

σ x
3 +

x !!x
σ x

And simplify: 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 

εrms
2

σ x
3 ≈

T
V
≈ P



kBTx =m vx
2             T = 1

3
Tx +Ty +Tz( )           Ek =

1
2
m v2 =

3
2
kBT

Beam Thermodynamics


Kinetic theory of gases defines temperatures in each directions and 
global  as:   

Definition of beam temperature in analogy:  

kBTbeam,x = γmo vx
2

We get: 

vx
2 = β 2c2 !x 2 = β 2c2σ x '

2 = β 2c2 εrms
2

σ x
2 = β

2c2 εrms
βx

kBTbeam,x = γmo vx
2 = γmoβ

2c2 εrms
2

σ x
2 = γmoβ

2c2 εrms
βx

Pbeam,x = nkBTbeam,x = nγmoβ
2c2 εrms

2

σ x
2 = NTγmoβ

2c2 εrms
2

σ Lσ x
2



S = kN log πε( )

kBTbeam,x = γmoβ
2c2 εrms

βx



The entropy of the  distribution is by 
definition: 

Phase space evolution!

With space charge => no cross over




No space charge => cross over


is the number of ways 
in which the points 
can be assigned to the 
cells to produce the 
given distribution 

 For large N, n,  Stirling's formula gives: 

Emittance and Entropy


  If  A  is sufficiently small, the summation may be replaced by an integral to give: 

ρ dx d !x = N∫
( ) 



The entropy of the  distribution is by 
definition: 

Phase space evolution!

With space charge => no cross over




No space charge => cross over
 Emittance and Entropy


ρ dx d !x = N∫

Consider a distribution  in which the density 
is uniform and bounded by an ellipse of area  
πε and: 

ρ =
n
A
=
N
πε

So = log N( )− log AN
πε
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#
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'= log πε( )− log A( )



Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0

€ 

" " σ x + kx
2σ x =

εrms
2

σ x
3

x !!x = −kx
2 x2

We obtain the rms envelope equation with a linear focusing force 
in which, unlike in the single particle equation of motion, the rms 
emittance enters as defocusing pressure like term. 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

Envelope Equation with Linear Focusing




ks =
qB

2mcβγ

Equilibrium solution:

!!σ r + kr
2σ r =

εrms
2

σ r
3

σ r =
εrms
kx

Matched beam

Matching Condition:




Lets now consider for example the simple case with   
describing a beam drifting in the free space.  
 
The envelope equation reduces to: 
 

x !!x = 0

σ x
3 !!σ x = εrms

2

σ o, !σ oWith initial conditions               at zo, depending on the upstream 
transport channel, the  equation has a hyperbolic solution:  
 



Considering the case              (beam at waist) 
  
and using the definition  
 
the solution is often written in terms of the       function as:  
 

!σ o = 0

σ x = βεrms

This relation indicates that without any external focusing element the 
 
 beam envelope increases from the beam waist by a factor          with 
 
 a characteristic length  



βo

β z( )
2βo

βw

For an effective transport of a beam with finite emittance is mandatory 
to make use of some external force providing beam confinement in the 
transport or accelerating line.  



p = βγmoc
dpx
dt

=
d
dt

p !x( ) = βc d
dz

p !x( ) = 0

!!x +
!p
p

!x = 0 !!x = −
βγ( )!

βγ
!x

Envelope Equation with Acceleration


x !!x = −
βγ( )!

βγ
x !x = −

βγ( )!

βγ
σ xx ' = −

βγ( )!

βγ
σ x !σ x

!!σ x +
βγ( )!

βγ
!σ x + k

2σ x =
εn
2

βγ( )2σ x
3
+
ksc
σ x

Other External Focusing Forces

Space Charge De-focusing Force

Adiabatic Damping Emittance Pressure

€ 

εn = βγεrms

!!σ x =
εrms
2

σ x
3 +

x !!x
σ x
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