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Typical coordinates to describe the particle motion

(6 per particle)
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Paraxial Ray Approximation

paraxial rays => vector representations of the local trajectory which,
by definition, have an angle with respect to a design trajectory that 1s
much smaller than unity.

Trajectories of interest in beam physics are often paraxial: one must
confine the beam inside of small, near-axis regions.

Design trajectory

Paraxial rays —=

In a locally Cartesian coordinate system, we take the distance along
the design trajectory to be z. The horizontal offset 1s designated by x
and the horizontal angle 1s 0, .



Paraxial Ray Approximation

The angle is given in terms of the momenta as:

.
tan 6, = Px = = Pxy < D;

Pz Vz
In order to use z as the independent variable, we must be able to

write equations of motion in terms of z:

d 1 d

dz ~ v, dr

The derivative of a horizontal offset with respect to z 1s given by:

dx
x = = tan(6y) ¥ =tan(8,) = 6, = sin(8,) < 1




Example

Focusing systems often resemble simple harmonic oscillators, where

the transverse force i1s linear in offset: -
Fx F— _KX
And the equation of motion is:
. )

in terms of a ray description:

X +k*x =0 k = /v,

The solutions are of the form:

X = Xy coS(kz+ )

¥ = ‘_kxm sin(kz + ¢)‘ <<l = x << %

the paraxial approximation is valid for offsets smaller than the
characteristic oscillation wavenumber.

with an angle:




X = Xy cOS(kz+ )
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Trace space of an ideal bea:
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Trace space of a laminar beam
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Trace space of non larr
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In a system where all the forces acting on the particles are linear (i.e.,
proportional to the particle’s displacement x from the beam axis), it 1s
useful to assume an elliptical shape for the area occupied by the beam
in x-x° trace space.
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=» Emittance Concept



Geometric emittance: & 0

Ellipse equation:  yx° + 2c0x’ + fBx'° = €,

Twiss parameters: By -a’ =1 B =-2a

Ellipse area.: A = 7e,
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The slope of the beam envelope at point M: E' =%’ %

is the same as the slope of the particular ray defined by point M:  x'(M)=-a |—

By equating it follows that: /3’ "=



r'/R'a

Fig. 17: Filamentation of mismatched beam in non-linear force




Trace space evolution

No space charge => cross over With space charge => no cross over
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In charged particle beam dynamics, we are commonly not interested in the phase-
space location of individual particles, a statistical mechanics approach is
appropriate using function f (x, p, t)

The distribution function f 1s viewed as a smooth probability function in a 2M —
dimensional space f (x, p, t)

3,000 T
=y a -.l «® o
- s -‘..-l = .'. s
3 % . L e
'.’ S LT - |
L 3 " B o
1,500 —t S
\ h l.::.-‘.
t:'\ )
o \ N
: - -'l: h'-..?- = = \
-1 .500 . H ':l. - ';-.. f. ] s K
= - :-- l-‘ -
--I - . - . = T (1]
.-'- 1 a - '-: - :.‘. == -.-I a-l !
. AL Lo T I
-1.000755 — 050 3. 05 .100

The number of particles found in a differential volume dV = d*x d’p in the
neighborhood of a location x , p atatimet is simply given by f(x,p,t)dV.



The total time derivative of the phase space distribution function is

% ~of Z dx; of dp; of
dr ot dr dx;  dr op;
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If the forces are derivable from a Hamiltonian, then

. oH , oH
Ai = > Pi= ———>
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df 3t i dp; 0x;  0x; Op;
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If neither creation nor destruction of the particles are allowed, we also
have:

df
dt

= 0.

This result 1s termed Liouville’ s theorem, and it states that the phase
space density encountered as one travels with a particle in a Hamiltonian
system 1s conserved => The phase space Volume 1s also conserved



The full distribution function contains all of the information needed
to describe the state of a non-interacting ensemble of beam particles.

One may not need all of this information, though, and so it is often
the case that moments of the distribution are used to arrive at a

simpler description of the distribution’s evolution.

These moments are formally written in the Trace Space as

o0 o0
/ f XM (x, x7) dx dx’.
— 00 v —0O0

where m and n are equal to zero or a positive integer, and the
quantity m + nnis referred to as the order of the moment.



The zeroth-order moment is simply the normalization condition on
the distribution,

oo o0
f f fe(x, x')ydxdx’ = 1.
—00 J —00

The first-order moments are the centroids of the distribution

o0 o0
(x) = / / xfy (x, x") dx dx’,
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which vanish when a beam 1s simmetric to its design axis



The second moments are written in standard notation as the
distribution variances,
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Moments of a Distribution

First Moment:
— mean - measure of location

« Second Moment:
— standard deviation - measure of spread

 Third Moment:
— skewness - measure of symmetry
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rms emittance | €,y
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Define rms emittance:
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yx° + 2oxx + PxC =€,
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such that:

Since:

it follows:



It holds also the relation: vp - a’ =1
L o2 o? (0.
Substituting a, B,y we get LA
rms rms 8rms

We end up with the definition of rms emittance in terms of the
second moments of the distribution:

g = \/ ool -0 = \/ (<x2 ><x’2> = <xx’>2) oo Px




Which distribution has no correlations?
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What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?
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Assuming a generic X, X correlation of the type: X '=Cx"
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Whenn#1 ==> ¢_ %40

rms



Constant under linear transformation only

d
d—z<x2><x’2> — (') = 20 ) (%) + 2(8°) () () — 2(x”) (xx) = 0
For linear transformations, x” = —kfx_._ and the right-hand side of the

equation 1s
2k2 (x%) (xx) — 2(x?) (xx/)k? = 0,

R
SO

—(x*) (x?) — (xx)2 =0
dz

And without acceleration: X =




Normalized rms emittance: €, .ms

Canonical transverse momentum: P, = sz’ = mocﬁ)/x’ p,=p
€ =\/0202 ~-o’ =L\/(<x2><p2>—<xp >2)
n,rms X7 Py xXp, mOC X X

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(X,Px,¥,Py»Z,P,) T€mains ivariant.

dn

B—
dt

It hold also in the projected phase spaces (X,py).(¥,py)(;Z,p,)
provided that there are no couplings



Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two
conjugate variables (x,p, ). According to Heisenberg:

OO0 = h

X px _ 2
This limitation can be expressed by saying that the state of a particle
1s not exactly represented by a point, but by a small uncertainty

volume of the order of %’ in the 6D phase space.

In particular for a single electron 1n 2D phase space it holds:

e

classical limit

gn,rms -

0
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c VT = 2" =1.9%x10"m quantum limit

Y,

m,c

Where |&_| 1s the reduced Compton wavelength.
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Normalized and un-normalized emittances

p,=p.X =mclyx

£uome == ()02 -0 = [N )= (B ) = (B

mc

Assuming small energy spread within the beam, the normalized and
un-normalized emittances can be related by the above approximated
relation.

This approximation that 1s often used in conventional accelerators
may be strongly misleading when adopted to describe beams with
significant energy spread, as the one at present produced by plasma
accelerators.



When the correlations between the energy and transverse positions are
negligible (as in a drift without collective effects) we can write:

gs,rms _ </32y2><x2><x'2> _ <ﬁy>2 <xx'>2
Considering now the definition of relative energy spread:

. (Bv)-(Br)

L By

which can be inserted in the emittance definition to give:
(87 ) () o Y ()~

Assuming relativistic particles (B=1) we get:

2 2 2 2 2 2
gn,rms = <y >(Gy Oxgx’ + 8rms)




0, = (¥7) =1

0, =(xx")=-ag,,
It holds also the relation: vB-a’ =1
Substituting @, 8,7 we get 0, 0, —(j )2 -1

We end up with the definition of rms emittance in terms of the
second moments of the distribution:

g = \/ ool -0 = \/ (<x2 ><x’2> = <xx’>2) oo Px




Now take the derivatives:

d(fx:d _Li<x>__2 xx>_(7xx,
dz |dz 20 dz o
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Envelope Equation without Acceleration

()

O

We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.
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Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and

global as:
1

kyT, =m(v?) T=§(Tx+Ty+TZ) Ek=—m<v2>=§kBT

Definition of beam temperature in analogy:

KT peamx = VM, <V§> <v§> =%’ <x’2> = B’c’ol = ¢’ 83"’; = B2 Ems
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Property Hot beam Cold beam

ion mass (m,) heavy ion light ion

ion energy (By) high energy low energy

beam emittance (g) large emittance small emittance

lattice properties (yxy=1/Bxy) strong focus (low ) high B

P

hot cold
beam beam

phase space portrait foins X 0 .

U

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving
cold (light) electron beam.
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Emittance and Entropy

1,000 —Emge -
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For large N, n, Stirling's formula gives: log W= N log N — ) n, log n;.

i=1
If A 1s sufficiently small, the summation may be replaced by an integral to give:

1
S/kN =S, =log N — —pr log(4 p)dx dx’ p=nlA
fpdxdx'=N



Emittance and Entropy

3.000 g

s A = 0x0x’
1,500 The entropy of the distribution 1s by
definition:
o S=klogW

Consider a distribution in which the density
1s uniform and bounded by an ellipse of area
me and:
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Envelope Equation with Linear Focusing

" 2
" <xx > _ grms
O,.— = 3
Ox Ox

Assuming that each particle is subject only to a linear focusing

. . )
force, without acceleration: x"+k_x =0

take the average over the entire particle ensemble (xx")=—k; <x2>

2
&

rms
3
Oy

" 2
O,.+k,0, =

We obtain the rms envelope equation with a linear focusing force
in which, unlike in the single particle equation of motion, the rms

emittance enters as defocusing pressure like term.



Matching Condition:

Equilibrium solution: — Matched beam




Lets now consider for example the simple case with ~ (xx")=0
describing a beam drifting in the free space.

The envelope equation reduces to:

3 _nm 2
Gx Gx - grms

With initial conditions o,,0, at z_, depending on the upstream
transport channel, the equation has a hyperbolic solution:




Considering the case o) =0 (beam at waist)
and using the definition 0O, =./pk¢,,,

the solution 1s often written in terms of the [3’ function as:

This relation indicates that without any external focusing element the

beam envelope increases from the beam waist by a factor \/5 with

2

0

a characteristic length 3, = —2

rms



For an effective transport of a beam with finite emittance 1s mandatory
to make use of some external force providing beam confinement in the
transport or accelerating line.



Space Charge De-focusing Force

dp d d !
X = = E— = O
dt dt(px) pe dz(px) (B |
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Adiabatic Damping / Emittance Pressure

Other External Focusing Forces

Envelope Equation with Acceleration

p=pym;c

€, = ﬁygrms
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