Machine & People Protection Issues

CAS Introduction to Accelerator Physics
Constanța, 28th of September 2018

Peter Forck

Gesellschaft für Schwerionenforschung (GSI)

Lecture based on previous CAS & JUAS contributions by Daniela Kiselev, Xavier Queralt, Rüdiger Schmidt, Ivan Strasik, Markus Zerlauth...
Introduction and Outline

Reasons for machine protection:

- **Protection of the environment**: Only necessary activation inside & outside of the facility should be produced.
- **Protection of the accelerator**: Prevent for destruction of component, prevent for down-time & cost.
- **Enable save operation**: Threshold values for reliable operation.
- **Protection of people**: Important for workers and general public, following laws.

Outline of this talk:

- Introduction to risk & destruction potential
- Important atomic and nuclear physics
- Definition of loss categories, passive protection
- Measurements by Beam Loss Monitors
- Design of Machine Protection System
- Overview of personal safety
What Risk is acceptable?

The risk is a factor to prepare for decisions:

<table>
<thead>
<tr>
<th>Consequences</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>1</td>
</tr>
<tr>
<td>Improbable</td>
<td>2</td>
</tr>
<tr>
<td>Occasional</td>
<td>3</td>
</tr>
<tr>
<td>Probable</td>
<td>4</td>
</tr>
<tr>
<td>Frequent</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Catastrophic</td>
<td>5</td>
<td>10</td>
<td>18</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>4 Major</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>3 Severe</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>2 Minor</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>1 Slight</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Risk = probability of an accident * consequences measured in terms of e.g. money, manpower, accelerator downtime, radiation pollution

- Intolerable or acceptable depends on e.g. maintenance access, destruction level, operation)
- Different accelerator facilities can have different risks (e.g. medical ↔ research facilities)
- Risk must be weighted to foreseen usage, goals and possible achievements
What is the Risk for an Accelerators?

Categories of destruction, consequences and risk:

- **Heating**: Lost beam heat the surrounding by its energy loss (by atomic physics)
 - **Consequence**: Material is melted and deformed ⇒ proper functionality hindered
 - **Risk**: Stop of operation
 Example: Destroyed instrumentation, leak in vacuum chamber, quench of superconducting magnet

- **Activation**: Nuclear reaction & showers caused beam particle & absorbing material (nuclear physics)
 - **Consequence**: Permanent activation ⇒ pollution, human access hindered
 - **Risk**: Maintenance impossible, expensive disposal

- **Financial aspects**: Shield against radiation contributes significantly
 - **Consequence**: Reconstruction of buildings
 - **Risk**: Insufficient budget, loss of operation permit

- **User requirements**: Less beam available for users
 - **Consequence**: Disappointed users
 - **Risk**: Cancel financial support for accelerator facility
Stored Beam Energy at Accelerators

Beam power of fixed target proton accelerator:
LINACs, cyclotrons or extraction from synchrotrons

Stored beam energy within a synchrotron:
Mainly large circular collider

Examples: Energy of 1MJ correspondance:
- 1 MJ is the kinetic energy of 2 600 kg with an velocity of 100 km/h
- 1 MJ can heat and melt 1.5 kg of copper
- 1 MJ is liberated by the explosion of 0.25 kg TNT

LINAC: 1 MW delivered within 1 s equals to 1MJ

Courtesy M. Lindroos & R. Schmidt
Outline of this talk:

- Introduction to risk & destruction potential
- Important atomic and nuclear physics
- Definition of loss categories, passive protection
- Measurements by Beam Loss Monitors
- Design of Machine Protection System
- Overview of personal safety
Interaction with matter

General:
- Charged particles interacts with electrons
 - shorter range
- Neutral particles ionizes only indirectly
 - longer range
- Atomic processes have larger cross section than nuclear processes

'Geometrical' cross section:

Cross section σ_{geo} comparable to size:
- Size of atom: $r_{Bohr} = 0.053$ nm
 $$\sigma_{geo}^{atom} = \pi (r_{Bohr})^2 = 8.8 \cdot 10^{-17} \text{ cm}^2$$
 $$\approx 10^{-16} \text{ cm}^2$$
- Size of nucleus: $r_{nucl} \approx 3$ fm
 $$\sigma_{geo}^{nucl} = \pi (2 \cdot r_{nucl})^2$$
 $$\approx 10^{-24} \text{ cm}^2 \equiv 1 \text{ barn}$$

\Rightarrow very probable reactions have $\approx \sigma_{geo}$

Hard balls 'geometrical' cross section:
$$\sigma_{geo} = \pi (r_a + r_b)^2$$ for any 'reaction'
Energy Loss of Ions in Copper

Bethe Bloch formula:

\[-\frac{dE}{dx} = 4\pi N_A r_e m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot \frac{Z_p^2}{\beta^2} \left(\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 \right)\]

Range: \[R = \int_0^{E_{\text{max}}} \left(\frac{dE}{dx} \right)^{-1} dE \]

with approx. scaling \(R \propto E_{\text{max}}^{1.75} \)

Numerical calculation for ions with semi-empirical model e.g. SRIM
Main modification \(Z_p \rightarrow Z_{\text{eff}}^p(E_{\text{kin}}) \)

This is an atomic physics process:
1. Projectile ions liberates fast electrons
2. Thermalization by collisions with further electrons
3. Transfer of energy to lattice (phonon) \(\Rightarrow \) heating of target
Energy Loss and Heating: Calculations

Example: Proton in copper target calc. with FLUKA

General method of calculation (simplified):

1. Differential energy loss: by Bethe-Bloch \(\frac{dE}{dx}(x) \) via codes like SRIM, LISE, FLUKA, MARS...

2. Energy deposition: \(\frac{dE}{dV} = - \frac{dE}{dx} \cdot \frac{N}{A} \left[\frac{J}{cm^3} \right] \) with \(N \): number of particles, \(A \): cross section

3. Temperature rise: \(\Delta T = \frac{dE}{dV} \cdot \frac{1}{\rho \cdot c_p} \left[K \right] \) for short bunches; \(\rho \): mat. density, \(c_p \): specific heat

4. Further material response: Melting, evaporation, pressure and stress via e.g. ANSYS

5. Secondary particles: Nuclear reactions, fragmentation, spallation, shower.... → discussed later

Y. Nie et al., Phys Rev AB 20, 081001 (2017)
Example: Proton in copper target calc. with FLUKA

Proton $E_{\text{kin}} = 50\text{ MeV}$

size $\sigma_x = 0.2\text{ mm}$

Proton $E_{\text{kin}} = 50\text{ TeV}$

size $\sigma_x = 0.2\text{ mm}$

Example: Proton in copper target at central path

Proton:

$E_{\text{kin}} = 7\text{ TeV}$

2808 bunch

380 MJ energy at center $r=0$

Remark: Low energetic proton have large energy deposition at short range e.g. $E_{\text{kin}} = 50\text{ MeV}$
Beam Dump for high Intensity Beams

Beam dump at LHC:

Extraction of LHC within one turn 86 μs on the beam dump (simulation): ΔT[°C]

Beam dump at LHC:

7m long, \varnothing 0.7 m, graphite
900 tons of concrete shielding

Nuclear Physics Processes for Protons

Nuclear reactions via spallation for protons with $E_{\text{kin}} > 100$ MeV (simplified):

- Pre-equilibrium phases: π-exchange within $\approx 10^{-22}$ s with $E_{\text{kin}} > 20$ MeV \Rightarrow hadronic shower
- Inter-nuclear cascade: Evaporation of n, p, d, α with $E_{\text{kin}} \approx 1 - 10$ MeV
- Fission for heavy nuclei
- β & γ decay of nuclei with long lifetime $\tau >> 10^{-9}$ s

Result on long term $t > 1$ ms: Radioactive nuclei = activation

D. Kiselev, CAS 2011
Nuclear Physics Processes for Protons

Nuclear reactions via spallation for protons with $E_{\text{kin}} > 100$ MeV:
- Pre-equilibrium phases: π-exchange within $\approx 10^{-22}$ s with $E_{\text{kin}} > 20$ MeV
- Inter-nuclear cascade: Evaporation of n, p, d, α with $E_{\text{kin}} \approx 1 - 10$ MeV
- Fission for heavy nuclei
- β & γ decay of nuclei with long lifetime $\tau \gg 10^{-9}$ s

Intranuclear cascade

Result on long term $t > 1$ ms: Radioactive nuclei = activation

D. Kiselev, CAS 2011

Nuclear Physics Processes for Protons

Impact of protons with $E_{kin} > 100$ MeV at beam pipe or dump:

- Hadronic shower
- Beam fragmented nuclei, secondary nuclei
- Fast and slow $n, p, d, \alpha \ldots$
- β & γ decay of target nuclei
 on long time scale

Vacuum pipe might be thick target
due to grazing incident

Example of cross section for protons on steel beam pipe:

- Reaction: $\text{Fe} + p \rightarrow ^{54}\text{Mn} + \text{something}$
 [$100 \text{ mb} = 1/10 \sigma_{geo}$ with $r_{Fe} \approx 3 \text{ fm}$ for iron]
- ^{54}Mn lifetime $t_{1/2} = 312$ days
- Electron capture $E = 1.3$ MeV to ^{54}Cr (excited)
 with X-ray emission of $E_{\gamma} = 0.54$ MeV
- ^{54}Cr decay via γ emission $E_{\gamma} = 0.83$ MeV
 \Rightarrow activation of beam pipe

Remark: Comparable cross section for fast neutrons

D. Kiselev, CAS 2011
Tolerable Beam Losses

Rule of thumb for proton beam with $E_{\text{kin}} > 100$ MeV:

‘Beam loss below 1 W/m enables hands-on maintenance’

- **Example**: 1 W/m $\approx 6 \times 10^9$ protons/(m·s) at 1 GeV
- **Care**: Most energy is lost by atomic process, while activation depends on nuclear physics
 \Rightarrow dependence on projectile and target

Simulation for 1 GeV proton irradiation:

Stainless steel beam pipe after 1 W/m beam loss for 100 days & 4 h ‘cool down’

<table>
<thead>
<tr>
<th>Condition</th>
<th>Activity Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural background</td>
<td>1 mSv/a</td>
</tr>
<tr>
<td>Medical X-ray CT</td>
<td>≈ 3 mSv</td>
</tr>
<tr>
<td>Max. for rad. workers</td>
<td>20 mSv/a</td>
</tr>
</tbody>
</table>

Simulation for 1 W/m losses for 1 GeV/u impact:

- 100 days irradiation
 of stainless steel No. 304
 [Fe(70%), Cr(18%), Ni(10%), Mn(2%)]
- Decrease of activation:
 $\approx 10\%$ after 1 year
- Isotope mixture same for all ions
 \Rightarrow highly activated material
 needs significant ‘cool down’

Rule of thumb: Light targets (C, Al ...) have lower activation for impact of same # particles

Secondary Particle Production for Electron Beams

Processes for interaction of electrons

For $E_{\text{kin}} < 10$ MeV:
- Mainly electronic stopping \Rightarrow X-rays, slow e^-

For $E_{\text{kin}} > 10$ MeV:
- Bremsstrahlung-γ, forward peaked $E_\gamma = 5$-50 MeV
 $\Rightarrow \gamma \rightarrow e^+ + e^- \text{ or } \mu^+ \ldots \rightarrow$ electro-mag. showers
 \Rightarrow Excitation of giant resonances $E_{\text{res}} \approx 10$-30 MeV
 via (γ, n), (γ, p) or (γ, np)
 \rightarrow Fast neutrons emitted
 \rightarrow Neutrons: Long ranges in matter
 - no ele.-mag. interaction but nuclear reactions
- Photo-Pion reaction: $d (\gamma, \pi^0)$ pn or $d (\gamma, \pi^-)$ pp
 \Rightarrow activation at electron accelerators
Interaction of Neutrons

Neutrons don't interact with electrons

Nuclear physics processes:

- Elastic scattering: $X(n,n)X$
 - with X receiving recoil momentum
- Absorption often with γ emission: $^A X (n,\gamma)^{A+1}X$

Example: Neutron on copper

Elastic scattering: large cross section for thermal n

Absorption: large cross section at resonances
 - γ-emission and activation

For $E \gg 100$ MeV comparable cross section as proton

$^{63}\text{Cu} (n,\gamma)^{64}\text{Cu}$

^{64}Cu lifetime 13 h

A. Zhukov, BIW 2010

Remark: Shielding of n by plastic (‘paraffin’) or concrete
Interaction of high Energy γ

At accelerators the γ are originated from nuclear reactions or Bremsstrahlung for e$^-$.

Example: Absorption in lead

![Schematic for heavy ion e.g. lead](image)

'Secondic physics':

Photo-effect: $\gamma + \text{atom} \rightarrow e^- + \text{atom}^+$
approx. material scaling $\sigma_{\text{photo}} \propto Z^4$

Compton-effect: $\gamma + \text{atom} \rightarrow \gamma' + e^- + \text{atom}^+$
approx. material scaling $\sigma_{\text{comp}} \propto Z$

Pair prod.: $\gamma + \text{nucleus} \rightarrow e^- + e^+ + \text{nucleus}$
approx. material scaling $\sigma_{\text{pair}} \propto Z^2$.

Ele-mag. shower: for high E_γ

$\gamma \rightarrow (e^-e^+) \rightarrow \gamma'_brem \rightarrow (e^-e^+)' \rightarrow \gamma''_brem \rightarrow \ldots$

Nuclear physics

Giant resonance: $\gamma + \text{nucleus} \rightarrow n + \text{nucleus}'$
small cross section but create free neutrons

Mass absorption coef. $\mu = \frac{\rho N_A}{A} \cdot \sigma$
ρ density, N_A Advogadro const, A atomic mass

Courtesy C. Grupen, Xavier Queralt, JUAS
Placement of Beam Loss Monitors

Secondary particles and shower produces are emitted within a forward cone (in rest-frame isotopically but due to Lorentz-transformation forward in lab-frame).

Position of detector at quadruples due to maximal beam size.

High energy particles leads to a shower in forward direction \rightarrow Monte-Carlo simulation.

Example: Simulation of lost protons at LHC at 450 GeV of lost protons: \rightarrow at focusing quad. D & β_x maximum

Example: Simulation of number of shower particles

B. Dehning, JAS 2014, CERN-2016-002
Outline of this talk:

- Introduction to risk & destruction potential
- Important atomic and nuclear physics
- Definition of loss categories, passive protection
- Measurements by Beam Loss Monitors
- Design of Machine Protection System
- Overview of personal safety
Relevant Losses for Machine Protection

Types of losses:

1. **Irregular losses** or fast losses by malfunction → avoidable loss
 - Occurs only seldom i.e. have low probability
 - The whole beam or a significant fraction is lost
 - Usually within a short period of the operational cycle (e.g. injection, acceleration, extraction, ...)
 - Usually caused by
 - Hardware failures, inaccurate settings or control errors (magnets, cavities ...)
 - Beam instabilities (wake-fields, resonances, ...)
 - Manually initialized improper beam alignment
 ⇒ Beam abortion required to prevent for destruction via **interlock generation**.

2. **Regular losses** or slow losses → unavoidable loss
 - Caused by lifetime inside synchrotron (residual gas scattering or charge exchange, Touschek ...),
 - Caused by halo-formation and cleaning, aperture limitation, imperfections, machine errors
 - Caused by multi-turn injection, slow extraction,.... → known loss mechanism
 - Occurs in each cycle at characteristic times and/or beam parameters
 - Usually a few % of the beam intensity
 ⇒ Protection of **sensitive** components, beam abortion only required if above a certain level
Regular Losses from Halo

Halo formation at synchrotrons:
- Definition of halo: low density of particle with large betatron amplitude
- Caused by collective effect (e.g. space charge), resonances or machine errors
- Diffusion process (e.g. 1 µm per turn)

⇒ **unstable particles are lost**

Beam loss thermology: ‘uncontrolled regular loss’
⇒ Beam halo collimation system at a synchrotron

Goal: Low impurity beam
- **Warm synchrotron:** Protection of sensitive insertions (e.g. septum)
 Concentration of loss at few locations
- **Super-conduction synch:** + quench protection of sc magnets
- **Collider:** + well defined condition for detector at IP
 ⇔ min. exp. background
 Cleaning of collisional halo particles

⇒ Concentration of loss at dedicated locations i.e. ‘controlled losses’

LINAC: Halo generation by long. and trans. mismatch

Goal: Quench protection of sc civilities

Remark:
- Halo might have other distribution than core
- Halo formation and its mitigation is an actual topic

Courtesy I. Strasik CAS 2016
Two Stage Betatron Collimation System

General functionality of cleaning:
- Primary stage as **thin** foil **close** to beam
 \(\Rightarrow \) scattering of halo particles
 (Coulomb scattering by Moliere formula)
- Betatron amplitude increases
- Max. extension after \(\mu \approx 90^0 \) or \(270^0 \) betatron phase
- Secondary collimator as absorber more distant to beam

Example:
4.7 GeV scattering in \(L=1 \) mm Tungsten foil

![Diagram of the two-stage betatron collimation system](image)

Courtesy I. Strasik CAS 2016
LHC Collimator System:
- Primary stage
- Secondary & tertiary stage
- Absorbers

In total 110 movable devices
LHC Collimator System

LHC Collimator system:
- Primary stage as close as \(\approx 5\sigma_{\text{beam}} \approx 1 \, \text{mm} \)
- Secondary & tertiary stage made of carbon
- Absorbers made of tungsten alloy
- in total 110 movable devices moving e.g. from injection \(r = 5 \, \text{mm} \) \(\rightarrow \) 1 mm

Test of functionality:
- Loss concentrated at collimators

Experimental verification: Single bunch excitation

Result: Main losses concentrated at collimators

Cleaning efficiency:
\[\eta = \frac{\text{protons lost at collimator}}{\text{total beam loss}} \]
Result: \(\eta = 99.8 \% \) reached

Courtesy M. Zerlauth, CAS 2018

S. Redaelli, JAS CERN-2016-002
Collimation at LINACs

Halo development caused by

- higher order magnet fields (e.g. aberration)
- transverse mis-match
- off-momentum particles due to wrong focusing
- space charge forces

Goal: Halo cutting at low energy to prevent for activation

Collimators:
Cut the beam tail in space
$\mu = 90^\circ$ or $\mu = 45^\circ$ betatron phase to cut angle
\Rightarrow at least two locations required

Example: SNS LINAC
Scraping at 3 MeV
profile measurement at 40 MeV
M. Plum, CERN-2016-002
Outline

Outline of this talk:

- Introduction to risk & destruction potential
- Important atomic and nuclear physics
- Definition of loss categories, passive protection
- Measurements by Beam Loss Monitors
- Design of Machine Protection System
- Overview of personal safety
Basic Idea of Beam Loss Monitors

Basic idea for Beam Loss Monitors B LM:

A loss beam particle must collide with the vacuum chamber or other insertions

⇒ Interaction leads to some shower particle:

- e^-, γ, protons, neutrons, excited nuclei, fragmented nuclei

⇒ Detection of these secondaries by an appropriate detector outside of beam pipe

⇒ Relative cheap detector installed at many locations

Remark: Due to grazing angle a thin vacuum chamber might be a ‘thick target’

Diagram:

- Beam
- Vacuum pipe
- Lost beam particle
- BLM detector
- Interlock
- Display
- Front-end electronics
- Digitalization & fast analysis

Secondary products:
- Electromagnetic or hadronic shower
- Charged particles
- Neutrons
Plastics or liquids are used:

- Detection of **charged particles** by electronic stopping
- Detection of **neutrons** by elastic collisions n on p in plastics and fast p electronic stopping.

Scintillator + photo-multiplier:
- Counting (large PMT amplification)
- Or analog voltage ADC (low PMT amplification)
- Radiation hardness:
 - Plastics $1 \text{ Mrad} = 10^4 \text{ Gy}$
 - Liquid $10 \text{ Mrad} = 10^5 \text{ Gy}$

Example: Analog pulses of plastic scintillator:
- ⇒ broad energy spectrum due to many particle species and energies.

![Scintillator Diagram](image)
Cherenkov Light Detectors as Beam Loss Monitors

Cherenkov detectors:
Passage of a charged particle v faster than propagation of light $v > c_{medium} = c/n$

Technical: Quartz rod $n=1.5$ & photomultiplier

Example: Korean XFEL behind undulator

Cherenkov light emission:
For $v > c_{medium} = c/n$
light wave-front like a wake broadband light emission

Advantage:
- Detection of fast electrons only not sensitive to γ & synch. photons
- No saturation effects
- Prompt light emission

Usage: Mainly at FELs for short and intense pulses

H. Yang, D.C. Shin, FEL Conf. 2017
Ionization Chamber as Beam Loss Monitors

Energy loss of charged particles in gases → electron-ion pairs → current meas.

\[I_{\text{sec}} \propto \frac{1}{W} \cdot \frac{dE}{dx} \Delta x \]

shower particle

- sealed glass tube filled with Ar gas
- outer HV electrode (metallic cylinder)
- inner signal electrode (metallic cylinder)
- HV connector
- signal connector
- typically 20 cm

Sealed tube Filled with Ar or N\textsubscript{2} gas:
- Creation of Ar+-e- pairs, average energy \(W = 32 \text{ eV/pair} \)
- measurement of this current
- Slow time response due to \(\approx 10 \mu\text{s} \) drift time of Ar+

Per definition: Direct measurement of dose!

\begin{array}{|c|c|c|}
\hline
\text{Gas} & \text{Ionization Pot. [eV]} & \text{W-Value [eV]} \\
\hline
\text{Ar} & 15.7 & 26.4 \\
\text{N}_2 & 15.5 & 34.8 \\
\text{O}_2 & 12.5 & 30.8 \\
\text{Air} & & 33.8 \\
\hline
\end{array}

W is average energy for creation for one e- -ion pair:

- Ar: 15.7 eV, W = 26.4 eV
- N\textsubscript{2}: 15.5 eV, W = 34.8 eV
- O\textsubscript{2}: 12.5 eV, W = 30.8 eV
- Air: 33.8 eV

Formula:

\[W = \frac{1}{2} \cdot 2e \cdot \frac{dE}{dx} \Delta x \]
Ionization Chamber as BLM: TEVATRON and CERN Type

<table>
<thead>
<tr>
<th>TEVATRON, RHIC type</th>
<th>CERN type</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td></td>
</tr>
<tr>
<td>15 cm, Ø 6 cm</td>
<td>50 cm, Ø 9 cm</td>
</tr>
<tr>
<td>gas</td>
<td>N(_2) at 1.1 bar</td>
</tr>
<tr>
<td># of electrodes</td>
<td>61</td>
</tr>
<tr>
<td>voltage</td>
<td>1500 V</td>
</tr>
<tr>
<td>reaction time</td>
<td>0.3 (\mu)s</td>
</tr>
<tr>
<td># at the synchr.</td>
<td>(\approx) 4000 at LHC</td>
</tr>
<tr>
<td>aver. distance</td>
<td>1 BLM each (\approx) 6 m</td>
</tr>
</tbody>
</table>

- **TEVATRON, RHIC type**:
 - Size: 15 cm, Ø 6 cm
 - Gas: Ar at 1.1 bar
 - Number of electrodes: 3
 - Voltage: 1000 V
 - Reaction time: 3 \(\mu\)s
 - Number at the synchr.: \(\approx\) 4000 at LHC
 - Average distance: 1 BLM each \(\approx\) 6 m

- **CERN type**:
 - Size: 50 cm, Ø 9 cm
 - Gas: N\(_2\) at 1.1 bar
 - Number of electrodes: 61
 - Voltage: 1500 V
 - Reaction time: 0.3 \(\mu\)s

Peter Forck, CAS 2018, Constanta
Ionization Chamber as BLM: CERN Type

Simulation of det. efficiency by Geant4:
- Most sensitive to protons, electrons & high energy γ
- Low sensitive to neutrons
 \Rightarrow Calculation of lost protons by integrating of shower composition
 \Rightarrow Quench limit estimation

CERN type
- size: 50 cm, \varnothing 9 cm
- gas: N_2 at 1.1 bar
- # of electrodes: 61
- voltage: 1500 V
- reaction time: 0.3 μs
- # at the synchr.: \approx 4000 at LHC
- aver. distance: 1 BLM each \approx 6 m

A. North et al., HB 2010
Secondary Electron Monitor as BLM

Ionizing radiation liberates secondary electrons from a surface.

Working principle:
- Three plates mounted in a vacuum vessel (passively NEG pumped)
- Outer electrodes: biased by $U \approx +1$ kV
- Inner electrode: connected for current measurement (here current-frequency converter)

\rightarrow small and cheap detector, very insensitive.

B. Dehning et al., PAC 2007
Detection of neutrons **only** with a ‘REM-counter’:

Physical processes of signal generation:
1. Slow down of fast neutrons by elastic collisions with p
2. Nuclear reaction inside BF$_3$ gas in tube:
 \[^{10}\text{B} + \text{n} \rightarrow ^{7}\text{Li} + \alpha \text{ with } Q = 2.3 \text{ MeV} . \]
3. Electronic stopping of ^7Li and α leads to signal.

Remark: ‘REM-counters’ are frequently used for neutron detection outside of the concrete shield & in nuclear power plants

C. Grupen, *Introduction to Radiation Protection*
Comparison of different Types of BLMs

Different detectors are sensitive to various physical processes, very different count rate, but basically proportional to each other

Example: Beam loss 800 MeV/u \(\text{O}^{8+} \) for different BLMs at GSI-synchr.:

Typical choice of the detector type:

- **Ionization Chamber:**
 - Fast current reading or particle counting
 - Can be fabricated in any shape, cheap
 - Need calibration in many cases
 - Might suffer from radiation
 - Often used at electron accelerators

\[r_{\text{IC}} < r_{\text{BF}_3} < r_{\text{liquid}} < r_{\text{plastic}} \]
Outline of this talk:

- Introduction to risk & destruction potential
- Important atomic and nuclear physics
- Definition of loss categories, passive protection
- Measurements by Beam Loss Monitors
- Design of Machine Protection System
- Overview of personal safety
Relevant Losses for Machine Protection

Types of losses:

1. **Irregular losses** or fast losses by malfunction → avoidable loss
 - Occurs only seldom i.e. have low probability
 - The whole beam or a significant fraction is lost
 - Usually within a short period of the operational cycle (e.g. injection, acceleration, extraction, ...)
 - Usually caused by
 - Hardware failures, inaccurate settings or control errors (magnets, cavities ...)
 - Beam instabilities (wake-fields, resonances, ...)
 - Manually initialized improper beam alignment
 ⇒ Beam abortion required to prevent for destruction via interlock generation.

2. **Regular losses** or slow losses → unavoidable loss
 - Caused by lifetime inside synchrotron (residual gas, Touschek ...),
 - Caused by halo-formation and cleaning, aperture limitation, imperfections, machine errors
 - Caused by multi-turn injection, slow extraction,..... → known loss mechanism
 - Occurs in each cycle at characteristic times and/or beam parameters
 - Usually a few % of the beam intensity
 ⇒ protection of sensitive components, beam abortion only required if above a certain level
General Layout of a Machine Protection System: Design

Design criteria for a Machine Protection System:

1. Beam based: *Choice of BLM detector type*

 - Main type of radiation (protons, neutrons, electrons, muons.....
 - Expected radiation level at foreseen location
 - Required time response (fast particle counts or short beam delivery \leftrightarrow medium fast IC \leftrightarrow slow IC)
 - Required dynamic range to detect irregular losses e.g. 6 orders of magnitude!
 - Required reliability & fail safe

Proton accelerators: Most often IC are used for interlock-generation & particle counters for relative measurements (after calibration suited for interlock generation)

Electron accelerators: Scintillators and Cherenkov counters (partly due to short pulse operation)

2. Equipment based: *Functionality of any relevant device must be guarantied*

 - Magnet power supplier
 - rf-generators, cavity properties
 - Super-conducting state of magnet or cavity
 - Vacuum conditions
 - Relevant diagnostics instruments
 - Control system watchdog
 - ...

Remark: In exceptional cases an interlock-source can be masked to allow for acc. operation
General Layout of a Machine Protection System: Hardware

Design of a protection system:
- **BLM detector & analog front-end**
 - low input signal under regular losses
 - large dynamic range for irregular losses
 - e.g. current-frequency converter

- **Digitalization**
 - high time resolution (e.g. LHC 1 turn = 89 µs)

- **Comparison to threshold values**
 - fast, real-time calculation (FPGA, DSP)

- **Generation & broadcasting of interlock signal**
 - real-time operation required, equipment ok input

- **Beam permit**: if not ok:
 - beam abortion kicker@synchr. or chopper@LINAC
 - disable next beam production

- **Data logging**
 - detailed ‘post mortem ‘storage & archiving
 - error display

- **Generally**
 - robust & fail-save system required!
 - challenge: large dynamic range

- BLM
- Accelerator control
- threshold value calc.
- comparison
- interlock control
- kicker or chopper
- beam dumping
- stop beam delivery
- equipment flags
- further beam measures
- before cycle
- post mortem achieving

= analog = real-time OS = regular OS
Statistics for Interlock Generation

Beam dump statistics at LHC in year 2012 (above injection, 582 dumps):

- Beam: Losses (UFO) 2.6%
- Beam: Orbit 0.2%
- Beam: Losses 9.9%
- Equipment Failure: Safety 0.3%
- Equipment Failure: Controls 2.1%
- Equipment Failure: Machine Protection 14.0%
- Equipment Failure: Machine 22.6%
- TOTEM 4.4%
- CMS 0.5%
- LHCb 0.3%
- ALICE 0.3%
- ATLAS 0.0%
- Operations: End of Fill 30.1%
- Operations: Test and Development 10.9%
- Operations: Error 1.0%

- due to experiment’s advice
- external e.g. by operators
- equipment failure
- valid beam based
- external

B. Todd et al., CERNACC- 2014-0041
J. Wenninger, JAS 2014, CERN-2016-002
Outline of this talk:

- Introduction to risk & destruction potential
- Important atomic and nuclear physics
- Definition of loss categories, passive protection
- Measurements by Beam Loss Monitors
- Design of Machine Protection System
- Overview of personal safety

Cartoons from C. Grupen

Introduction to Radiation Protection, Springer Verlag 2010
Radiological Quantities and Units

Basic quantities & units for personal safety:

- **Absorbed dose:** \(D_{R,T} = \frac{1}{m} \int_V \frac{dE_R}{dV} \cdot dV \)

 \[\text{for each radiation type } R \text{ and each tissue } T \]

- **Equivalent Dose:** \(H_T = \sum_R w_R D_{R,T} = [\text{Sv}] \)

 with weight factor \(w_R \) for the radiation type

- **Effective Dose:** \(E = \sum_T w_T H_T = [\text{Sv}] = [100\text{rem}] \)

 with weight factor \(w_T \) for the absorption of each tissue \(T \)

 whole body irradiation \(\Leftrightarrow \sum_T w_T = 1 \)

- **Activity:** \(r = \left[\frac{1}{s} \right] = [\text{Bq}] = [27 \text{ pCi}] \)

 \(1 \text{ Ci} = \text{activity of } 1 \text{ g radium } ^{226}_{88}\text{Ra} \)

Example: Organ or Tissue

<table>
<thead>
<tr>
<th>Sensi.</th>
<th>(w_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonads</td>
<td>High</td>
</tr>
<tr>
<td>Lung, stomach, colon, lens, Hematopoietic & lymphatic system</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Liver, esophagus, chest, skin, muscle, heart, bone surface</td>
<td>Low</td>
</tr>
</tbody>
</table>

Neutrons: Since 2007 smooth function

- 100 keV < E < 2 MeV
- 2 MeV < E < 20 MeV
- 20 MeV < E

Radiation Types

- \(\gamma \)-rays: all energies
- 1 e-, e+, \(\mu \)-particles: all energies
- Protons: \(E > 20 \text{ MeV} \)
- \(\alpha \)-particles, heavier nuclei
- Neutrons: \(E < 10 \text{ keV} \)
- \(10 \text{ keV} < E < 100 \text{ keV} \)
- \(100 \text{ keV} < E < 2 \text{ MeV} \)
- \(2 \text{ MeV} < E < 20 \text{ MeV} \)
- \(20 \text{ MeV} < E \)
Shielding of Accelerators

Shielding of accelerator by rough rule of thumb:

Estimation of shielding by 10th-value \(\lambda_{10} \)

with \(H(l) = H_0 10^{-l/\lambda_{10}} \)

(disregarding any secondary particle transport)

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) [(\frac{g}{cm^3})]</th>
<th>(\lambda_{10}) [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>1.8</td>
<td>128</td>
</tr>
<tr>
<td>Concrete</td>
<td>2.4</td>
<td>100</td>
</tr>
<tr>
<td>Heavy concrete</td>
<td>3.2</td>
<td>80</td>
</tr>
<tr>
<td>Iron</td>
<td>7.4</td>
<td>41</td>
</tr>
<tr>
<td>Lead</td>
<td>11.3</td>
<td>39</td>
</tr>
</tbody>
</table>

Further rough rule of thumb:

- Protons, electrons & \(\gamma \) are att. by heavy materials
- Neutrons are scattered by hydrogen due to same mass
 Concrete contains \(\approx 10\%_{weight} \) \(H_2O \)
- Nuclear reactions produces further particles
Simplified Model Shielding of Accelerators

Simplified FLUKA calculation: 4GeV protons, iron beam dump ⌀ 1m l=3.5m, concrete 1 or 3 m, $5 \cdot 10^5$ particles

Result:
Mainly neutrons and μ behind thick shield

Results:
- Primary protons are stopped in dump
- **Neutrons** produced, scattered at wall $\approx 10^{-3}$ atten. at X by distance & concrete
- ‘Leakage’ through opening
- γ are from beam & neutrons in the wall $\approx 10^{-3}$ attenuation at X
- **Protons** produced from neutrons, but partly stopped in the wall
- Neutrons at X $\approx 0.3\%$ of 1m.
- Equal ‘leakage’ of n, γ & p
- γ well shielded
- **Protons** stopped in wall
Realistic Example for Shielding of Accelerators

Example shielding of accelerator: Proton beam of 29 GeV for anti-proton production

Assumption $2.5 \cdot 10^{13}$ protons on 11 cm long copper target

Shield: Iron (1.6 m downstream and 1 m transverse)

Concrete \approx 8 m around beam pipe

Goal: Free access region outside i.e. $H < 0.5 \mu$Sv/h

Shielding calculations:
Required for safety procedure
Numerical calculation required atomic, nuclear & particle physics models
e.g. FLUKA, MARS, PHITS

K. Knie et al., IPAC 2012
Categories of Locations & maximal Doses

Simplified categories of radiation areas:
For workers: Assumption 2000 h/a of access

- **Non-designated, free access**
 \[H/t < 1 \text{ mSv/a (full year)} = 0.5 \mu \text{Sv/h (for 2000 h)} \]

- **Supervised zone**
 \[H/t < 3 \mu \text{Sv/h} \]

- **Control zone**
 \[H/t < 10 \mu \text{Sv/h} \]

- **Limit access zone**
 \[H/t < 2 \text{ mSv/h} \]

- **Stricked ruled access zone**
 \[H/t < 25 \mu \text{Sv/h} \]

- **Prohibited access zone**
 \[H/t > 25 \mu \text{Sv/h} \]

Surveyed radiation area

Control area

Maximum dose for one year: 20 mSv/a
Maximum total life dose: 400 mSv
(Estimated lethal dose: 4000 mSv)

Remark: Actual limits are given by national laws.

ALARA principle: As Low As Reasonable Possible

An effective method of protection from radiation is to maintain as great a distance as possible from the source!
Categories of Locations & maximal Doses

Simplified categories of radiation areas:
For workers: Assumption 2000 h/a of access

<table>
<thead>
<tr>
<th>Categories of Radiation Areas</th>
<th>Maximum Dose for One Year</th>
<th>Maximum Total Life Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-designated, free access</td>
<td>20 mSv/a</td>
<td>400 mSv</td>
</tr>
<tr>
<td>Supervised zone</td>
<td>H/t < 3 µSv/h</td>
<td></td>
</tr>
<tr>
<td>Control zone</td>
<td>H/t < 10 µSv/h</td>
<td></td>
</tr>
<tr>
<td>Limit access zone</td>
<td>H/t < 2 mSv/h</td>
<td></td>
</tr>
<tr>
<td>Stricken ruled access zone</td>
<td>H/t < 25 mSv/h</td>
<td></td>
</tr>
<tr>
<td>Prohibited access zone</td>
<td>H/t > 25 mSv/h</td>
<td></td>
</tr>
</tbody>
</table>

Remark: Actual limits are given by national laws.

Proportional tube for γ:
30 keV < E_{ph} < 1.3 MeV

Moderated proportional tube for n:
1 eV < E_n < 20 MeV

Display Status:
- Supervised zone: H/t < 3 µSv/h
- Control zone: H/t < 10 µSv/h
- Limit access zone: H/t < 2 mSv/h
- Stricken ruled access zone: H/t < 25 mSv/h
- Prohibited access zone: H/t > 25 mSv/h

Control area:
Surveyed radiation area

Non-designated, free access:
H/t < 1 mSv/a (full year) = 0.5 µSv/h (for 2000 h)

Moderated thermo-luminescence detector for passive n-detection
Natural Radiation Exposure

Example of radiation level:

- **Natural geological dose:**
 In some parts the dose can be up to some 10 mSv/a **without** significant increase of diseases

- **Typical dose composition:**

 ![Graph showing annual whole-body dose in mSv]

 Ingestion:
 - 0.29 mSv (9%)
 - 0.48 mSv (16%)
 - 0.39 mSv (13%)

 External terrestrial radiation:
 - 0.6 mSv (20%)

 Medical exposure:
 - 1.26 mSv (42%)

 Inhalation of radon and thoron:

Source: German Bundesamt für Strahlenschutz
C. Grupen, Introduction to Radiation Protection
Avoidable, but wildly accepted Radiation Exposure

Cosmic ray based radiation effects depend on altitude and latitude

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Duration</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankfurt</td>
<td>San Francisco</td>
<td>11.5 h</td>
<td>45-110 µSv</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>Johannesburg</td>
<td>10.5 h</td>
<td>18-30 µSv</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>Rio de Janeiro</td>
<td>11.5 h</td>
<td>17-28 µSv</td>
</tr>
</tbody>
</table>

Source: German Bundesamt für Strahlenschutz

© by C. Grupen

C. Grupen, Introduction to Radiation Protection
Passive Film Badge Dosimeter and TLD

For personal safety a dosimeter should be worn!

Film badge: X-ray sensitive films with different absorbers to determine the energy of photons (typ. 5keV... 9MeV) & β^{\pm} (typ. > 0.3MeV)

Sensitivity for β & γ: 0.1 mSv to 5 Sv

Thermo-luminescence dosimeter TLD:

Crystal e.g. LiF is excited by radiation and emit light when heated neutron sensitive via $^6\text{Li}(n,\alpha)T$

Sensitivity for β & γ: 0.1 mSv to 10 Sv
Active personal Dosimeter

Active dosimeters for online display
Dose measurement with alarm function, has to be worn when entering a protected area

Ionization chambers or proportional chambers: Alternative: PIN-diode solid state detector

- Photons: typ. 10 keV... 10 MeV
- β^\pm: 0.25 1.5 MeV
 - **Sensitivity for β & γ:** 0.05 μSv/h to 1 Sv/h
 - (TLD sensitivity: 100 μSv to 5 Sv)

 ‘Pocket meter’ for γ-rays:
 - Scintillator NaI(Tl) + photo-multiplier for γ detection photons (typ. 60 keV... 1.5 MeV)
 - **Sensitivity for γ:** 0.01 μSv/h to 100 mSv/h
 - Older versions: Proportional tube

Advantage: Alarm functionality, sensitive
 - can be archived with some efforts

Disadvantage: Expensive
Summary

- Many accelerator are built to produce radiation, some risk remains.
- Accelerator components must be protected from overheating (‘atomic physics’).
 - e.g. superconducting magnet & cavities
 - Particles’ energy loss must be limited and/or steered to dedicated locations
 - Passive protection by collimators for protection or localizing
 - Active Machine Protection System based on Beam Loss Monitors
- Accelerator components must be protected from activation (‘nuclear physics’).
 - Losses must be limited to certain locations e.g. collimators & beam dump
 - ‘1 W/m criterion’ for hand-on maintenance
- Shield of the accelerator required
 - p, ion & γ best shield by high density material, but care for nuclear reactions
 - e⁻ shield for light material (lower Bremsstrahlung)
 - n light material preferred
- Radiation exposure to people should be avoided: ALARA principle

Thank you for your attention!
General Reading on Machine Protection

- US Particle Accelerator School – Beam Loss & Machine Protection, January 2017
 http://uspas.fnal.gov/materials/17UCDavis/davis-machineprotection.shtml
- D. Kiselev, *Activation and radiation damage in the environment of hadron accelerators* &
 D. Forkel-Wirth et al., *Radiation protection at CERN* in R. Bailey (Ed.) *Proc. CAS CERN-2013-001*
- C. Grupen, *Introduction to Radiation Protection*, Springer Verlag 2010
- Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics).
- Contributions to conferences, in particular to IPAC & IBIC.
Backup slides
For $E > 50$ MeV protons: nuclear σ_{nuc} quite low
\Rightarrow machine protection by *active* transmission control

Determination of maximal loss between consecutive transformers by ‘differential current measurement’
\rightarrow *dynamic* beam interruption in case of software-given threshold overshoot.

FPGA-electronics:
\rightarrow ADC digitalization
\rightarrow calculation of difference
\rightarrow digital comparator
\rightarrow chopper control in case of threshold overshoot

High current:
$t_{\text{pulse}} < 10 \, \mu$s only to prevent from damage!

H. Reeg (GSI) et al., Proc. EPAC’06
Fig. 6: Neutron energy distributions $E\Phi(E)$ in the transverse direction generated by 250 MeV protons impinging on an iron target thicker than the proton range. The distributions are for source neutrons and behind concrete shields of thicknesses ranging from 20 cm to 1 m. The distributions have been normalized to unit area in order to show better the change in the shape of the spectrum with increasing shield thickness.

D. Forkel-Wirth et al., CAS 2011, CERN-2013-001
Radiation Damage Displacements of Atoms

Low energy protons: Nuclear stopping (collision of protons with target nucleus results in recoil energy above binding energy to stopping)

For $E_{\text{kin}} > 100$ MeV nearly equal cross section

Electronic stopping range

Large capture cross section results in recoil energy

Fig. 12: Displacement cross-sections of protons (left) and neutrons (right) in copper obtained by two different approaches (see legend).

D. Kiselev, CAS 2011, CERN-2013-001
Radiation Damage of organic Materials

Radiation damage in plastic by ionizing radiation:
- Brake of chemical bonds and displacement of atoms
- Microscopic defects in the chemical bonds
- Displacement of atoms in the structural material

Example: Kapton foil of 125 µm thickness
Direct irradiation by ion beam’s energy loss dE/dx increases for heavy ions

Rough estimation of maximal dose

<table>
<thead>
<tr>
<th>Material</th>
<th>Dose [Gy]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon (PTEE)</td>
<td>10^3</td>
</tr>
<tr>
<td>Mylar</td>
<td>$5 \cdot 10^4$</td>
</tr>
<tr>
<td>Cable insulation</td>
<td>$5 \cdot 10^4$</td>
</tr>
<tr>
<td>Magnet coil insul.</td>
<td>10^6</td>
</tr>
<tr>
<td>Kapton (Polyamide)</td>
<td>10^7</td>
</tr>
</tbody>
</table>

T. Seidl et al, HB 2010
Microscopic Damage of structural Materials

D. Kiselev, CAS 2011, CERN-2013-001
Energy Loss and Heating: Experiment

Verification of material interaction by 450 GeV protons:
Destruction of material due to temperature rise
- Melting, sublimation plasma formation
- Mechanical stress
⇒ Verification of simulation
⇒ Finding proper dump material

Experiment with 450 GeV protons:

V. Kain et al., PAC’05, 1607 (2005)
Energy Loss and Heating: Experiment

Verification of material interaction by 440 GeV protons:
Destruction of material due to temperature rise
- melting, sublimation plasma formation
- mechanical stress
⇒ verification of simulation
⇒ finding proper dump material

Beam: 440 GeV $\approx 10^{13}$ protons, $\sigma_x = \sigma_y \approx 2$ mm within $t = 50$ µs
$\Rightarrow E_{\text{tot}} \approx 1$ MJ

HiRadMat facility at CERN SPS

A. Bertarelli, JAS CERN-2016-002.

Experiment with 450 GeV protons:

V. Kain et al., PAC’05, 1607 (2005)
Solid-state detector: Detection of charged particles.

Working principle
- About 10^4 e^--hole pairs are created by a Minimum Ionizing Particle (MIP).
- A coincidence of the two PIN reduces the background due to low energy photons.
- A counting module is used with threshold value comparator for alarming.

→ **small and cheap detector.**
Dynamic Machine Protection by Transmission Measurement

For $E > 50$ MeV protons: nuclear σ_{nuc} quite low
\Rightarrow machine protection by *active* transmission control

Determination of maximal loss between consecutive transformers by ‘differential current measurement’
\rightarrow *dynamic* beam interruption in case of software-given threshold overshoot.

FPGA-electronics:
\rightarrow ADC digitalization
\rightarrow calculation of difference
\rightarrow digital comparator
\rightarrow chopper control in case of threshold overshoot

High current: $t_{\text{pulse}} < 10 \, \mu\text{s}$ only to prevent from damage!

H. Reeg (GSI) et al., Proc. EPAC’06
Application of BLMs for slow Extraction

BLM can be installed at several locations and determine local, regular losses:

- Losses during acceleration
- Losses at ele. septum
- Momentum dependent extraction current
 ⇒ change of extraction angle
 ⇔ time-dependent losses at mag. septum
 ⇒ used for optimization of time-dep. extraction angle

Example at SIS synchr. using quadrupole variation for slow extraction cycle time 3s:

- Losses due to:
 - Acceleration
 - Extraction

BLM can be installed at several locations and determine local, regular losses:

- dc transformer
- BLM at ele. septum
- IC at experiment
- BLM at synch. quadrupole
- BLM at mag. septum
- IC at experiment

<table>
<thead>
<tr>
<th>injection</th>
<th>extraction</th>
<th>target counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>synchrotron</td>
<td>BLM at quad.</td>
<td>BLM</td>
</tr>
<tr>
<td>ele. septum</td>
<td>BLM</td>
<td>mag. septum</td>
</tr>
</tbody>
</table>

- BLM at quad.
Concentration of Activity by Collimators

Collimator system for loss concentration:
Fermilab Main Injector
(normal conducting synchrotron)

Residual activation at J-PARC RCS

Beam Stop 25th Feb., 2008 at 3:55
Measurement 25th Feb., 2008 at 13:30

K. Yamamoto et al., EPAC 2008, p.382
B.C. Brown, HB 2008, p.312
Collimation at LINACs

Halo development caused by

- higher order magnet fields (e.g. aberration)
- transverse mis-match
- off-momentum particles due to wrong focusing
- space charge forces

Goal: Halo cutting at low energy to prevent for activation

Collimators:

Cut the beam tail in space

\(\mu = 90^0 \) or \(\mu = 45^0 \) betatron phase to cut angle

\(\Rightarrow \) at least two locations required

Example: SNS LINAC
Scraping at 3 MeV
profile measurement at 40 MeV
M. Plum, CERN-2016-002