Particle Colliders and Concept of Luminosity

(or: explaining the jargon^{*)}...)

http://cern.ch/Werner.Herr/CAS2018_Romania/lectures/luminosity.pdf

) (beta, cross section, femtobarn, inverse femtobarn, crossing angle, luminosity measurement, filling schemes, pile-up, hour glass effect, crab crossing, dynamic beta, beam-beam effects ...)

Particle colliders ?

Used in particle physics
 Look for rare interactions
 Many interactions (events)
 Want highest energies

Collider versus fixed target (once more ..):

Fixed Target: $\vec{p_2} = \mathbf{0} \rightarrow \sqrt{s} = \sqrt{2m^2 + 2E_1m}$ Symmetric Collider: $\vec{p_1} = -\vec{p_2} \rightarrow \sqrt{s} = E_1 + E_2$ **Circular Colliders (mostly synchrotrons):**

double ring colliders (e.g. LHC, ISR) can accelerate any type of particle some may have to be produced first : $\mu, \gamma, ...$ usually with crossing angles

single ring colliders (e.g. LEP, SppS)
collides particles - antiparticles
some sort of separation required

Linear colliders (SLC, CLIC, ILC, ...)

Mainly used (proposed) for leptons

(reduced synchrotron radiation)

→ With or without crossing angle

Need very small beam sizes

(maybe treated if time permits ..)

Rare interactions and cross section

Cross section σ measures the <u>likelihood</u> a particular process occurs: nothing to do with its size ! (imagine e^+e^- or $\gamma\gamma$ collisions)

Characteristic for a given process

Measured in: $barn = b = 10^{-24} \text{ cm}^2$ (picobarn = 10^{-36} cm^2)

Some examples for the LHC energy:

 $\begin{aligned} \sigma(pp \to X) &\approx 0.1 \text{ b} \\ \sigma(pp \to X + H) &\approx 1 \cdot 10^{-11} \text{ b} \\ \sigma(pp \to X + H \to \gamma\gamma) &\approx 50 \cdot 10^{-15} \text{ b} &= 50 \text{ fb (femtobarn)} \end{aligned}$

VERY rare (one in $2 \ 10^{12}$), need many collisions ...

(traditionally: cm^2 instead of m^2)

Collider performance issues

Luminosity:

Number of interactions

Number of interactions per second

More: they have to be useful, some issues

- Time structure of interactions (how often and how many at the same time: pile-up)
- Space structure of interactions (size of interaction region: vertex density)
- Quality of interactions (background, dead time etc.)

Luminosity - we want:

- ----

Relates cross section σ_p and number of interactions per second $\frac{dR}{dt}$

$$\frac{dR}{dt} = L \times \sigma_p \qquad (\rightarrow \text{ units}: \text{ cm}^{-2}\text{s}^{-1})$$

Typically:
$$\frac{dR}{dt}$$
 measured and σ_p wanted

<u>Must</u> be:

- → Relativistic invariant (see lecture on "Relativity")
- A property of the collider: Independent of the physical reaction, i.e. σ_p
- Reliable procedures to compute and measure

Interaction rate from:

flux N/s target density ρ

size

Collider luminosity: now target (bunched beam) is moving

- $L \propto N_1 N_2 \int \int \int \int \rho_1(x,y,s,-s_0) \rho_2(x,y,s,s_0) dxdydsds_0$
- s_0 is "time"-variable: $s_0 = c \cdot t$ (at: $s_0 = 0$ and t = 0 bunch <u>centres</u> collide)

Assume uncorrelated densities in all planes, then they factorize:

$$\rho(x, y, s, s_0) = \rho_x(x) \cdot \rho_y(y) \cdot \rho_s(s \pm s_0)$$

Moving beams: requires a <u>Kinematic Factor</u>

$$\mathbf{K} = \sqrt{((\vec{v_1} - \vec{v_2})^2 - (\vec{v_1} \times \vec{v_2})^2)/c^2}$$

For head-on collisions: $\vec{v_1} = -\vec{v_2} \implies K_{bb} = 2$ (Space charge: $K_{sc} = 1 - \beta$)

With revolution frequency f and number of bunches n_b the luminosity L becomes:

$$L = \mathsf{K} \cdot N_1 N_2 \cdot f \cdot n_b \int_{-\infty}^{\infty} \rho_x(x) \rho_y(y) \rho_s(s-s_0) \cdot \rho_x(x) \rho_y(y) \rho_s(s+s_0)$$

In principle: should know all distributions ρ and ρ , but Gaussian distributions are usually a good approximation, tails can be ignored

transverse :
$$\rho(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma_x^2}\right)$$
 $\rho(y) = \frac{1}{\sigma_y \sqrt{2\pi}} \exp\left(-\frac{y^2}{2\sigma_y^2}\right)$

Plugging it in:

For beams of equal size: $\sigma_1 = \sigma_2 \rightarrow \rho_1 \rho_2 = \rho^2$: $L = \frac{2 \cdot N_1 N_2 f n_b}{(\sqrt{2\pi})^6 \sigma_s^2 \sigma_x^2 \sigma_y^2} \int e^{-\frac{x^2}{\sigma_x^2}} e^{-\frac{y^2}{\sigma_y^2}} e^{-\frac{s^2}{\sigma_s^2}} e^{-\frac{s_0^2}{\sigma_s^2}} dx dy ds ds_0$

Integrating over s and s_0 (means during of passage), using:

 $\int_{-\infty}^{\infty} e^{-at^2} dt = \sqrt{\pi/a} \quad \text{(the happy Gaussian)}$ $L = \frac{2 \cdot N_1 N_2 f n_b}{8(\sqrt{\pi})^4 \sigma_x^2 \sigma_y^2} \int e^{-\frac{x^2}{\sigma_x^2}} e^{-\frac{y^2}{\sigma_y^2}} dxdy$

Finally after integration over x and y: \implies

$$L = \frac{N_1 \ N_2 \ f \ n_b}{4\pi \ \sigma_x \ \sigma_y}$$

The more general case:

$$\sigma_x \neq \sigma_x$$
 and $\sigma_y \neq \sigma_y$

$$\implies \qquad L = \frac{N_1 \ N_2 \ f \ n_b}{2 \ \pi \ \sqrt{\sigma_x^2 + \sigma_x^2} \ \sqrt{\sigma_y^2 + \sigma_y^2}}$$

What if the distributions are not Gaussian ?

Using r.m.s. of an arbitrary (but realistic) distribution for σ to compute Luminosity the errors are typically 5%

→ This has consequences for luminosity measurements (makes it easier) ...

Examples: some circular colliders

	Energy	L_{max}	rate	σ_x/σ_y	Particles
	$({ m GeV})$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	\mathbf{s}^{-1}	$\mu {f m}/\mu {f m}$	per bunch
SPS $(p\bar{p})$	$315 \mathrm{x} 315$	6 10 ³⁰	$4 \ 10^5$	60/30	pprox 10 10 ¹⁰
Tevatron (p \bar{p})	1000 x 1000	100 10 ³⁰	7 10^{6}	30/30	$pprox$ 30/8 10 10
HERA (e^+p)	30x920	40 10^{30}	40	250/50	$pprox$ 3/7 10 10
LHC (pp)	7000x7000	10000 10 ³⁰	10^9	17/17	$pprox$ 16 10 10
$\rm LEP~(e^+e^-)$	$105 \mathrm{x} 105$	$100 10^{30}$	≤ 1	200/2	$pprox$ 50 10 10

I will concentrate on elephants

Complications

- Crossing angle
- Hour glass effect
- Collision offset (wanted or unwanted)
- Displaced waist (minimum beam size not where we collide)
- Non-Gaussian profiles
- Dispersion at collision point
- Strong coupling
- 🧧 etc.

Collisions at crossing angle

Needed to avoid unwanted collisions

- → For colliders with many bunches: e.g. LHC, CESR, KEKB
- → For colliders with coasting beams: e.g. the late ISR

Some numbers:

- → LHC: 0.300 mrad
- → ISR: 300 mrad

Collisions angle geometry (horizontal plane)

For the calculation of the integral:

The coordinate systems for the two beams are tilted (by half the crossing angle and in opposite directions)

Assume crossing in horizontal (x, s)- plane. Transform to new coordinates (now different coordinate systems for the two beams):

$$(x,s) \rightarrow (x_1, s_1, x_2, s_2)$$

$$\begin{pmatrix} x_1 = x \cos \frac{\phi}{2} - s \sin \frac{\phi}{2}, & s_1 = s \cos \frac{\phi}{2} + x \sin \frac{\phi}{2}, \\ x_2 = x \cos \frac{\phi}{2} + s \sin \frac{\phi}{2}, & s_2 = s \cos \frac{\phi}{2} - x \sin \frac{\phi}{2} \end{pmatrix}$$

After longitudinal integration:

$$L = 2 \cdot \cos^2 rac{\phi}{2} \cdot N_1 \cdot N_2 f n_b \int\limits_{-\infty}^{\infty}
ho_x(x_1)
ho_y(y_1)
ho_x(x_2)
ho_y(y_2) dxdy$$

The Integration with crossing angle:

A simplification here: since σ_x , x and $\sin(\phi/2)$ are small:

1. drop all terms $\sigma_x^k \sin^l(\phi/2)$ or $x^k \sin^l(\phi/2)$ when $k+l \ge 4$ 2. approximate $\sin(\phi/2) \approx \tan(\phi/2) \approx \phi/2$

(not a good approximation for the ISR, but it had coasting beams ...)

Correction for crossing angle

Crossing Angle
$$\Rightarrow$$
 $L = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot S$

S is called the "geometric factor"

For small crossing angles and $\sigma_s \gg \sigma_{x,y}$

$$\Rightarrow S = \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \tan \frac{\phi}{2})^2}} \approx \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \frac{\phi}{2})^2}}$$

Example nominal LHC (at 7 TeV): $\Phi = 285 \ \mu \text{rad}, \ \sigma_x \approx 17 \ \mu \text{m}, \ \sigma_s = 7.5 \ \text{cm}, \ \text{S} = 0.84$

For large crossing angle Φ and small beam size σ_x the loss can be large, maybe too large

A proposed fix: "crab" crossing scheme

 \rightarrow crossing angle: loss of luminosity can be large for long bunches or small β^* (small beam sizes)

"crab" crossing can recover geometric factor

Done with transversely deflecting cavities (if you wondered what they can be used for)

 \rightarrow Foreseen for the LHC luminosity upgrade (lower β^* planned)

Crossing angle plus : Offset

Transformations with offsets d_1 and d_2 in crossing plane:

$$\begin{cases} x_1 = \mathbf{d}_1 + x \cos \frac{\phi}{2} - s \sin \frac{\phi}{2}, & s_1 = s \cos \frac{\phi}{2} + x \sin \frac{\phi}{2}, \\ x_2 = \mathbf{d}_2 + x \cos \frac{\phi}{2} + s \sin \frac{\phi}{2}, & s_2 = s \cos \frac{\phi}{2} - x \sin \frac{\phi}{2} \end{cases}$$

Gives after integration over y and s_0 :

$$L = \frac{L_0}{2\pi\sigma_s\sigma_x} 2\cos^2\frac{\phi}{2} \int \int dxds \ e^{-\frac{x^2\cos^2(\frac{\phi}{2}) + s^2\sin^2(\phi/2)}{\sigma_x^2}} e^{-\frac{x^2\sin^2(\phi/2) + s^2\cos^2(\phi/2)}{\sigma_s^2}}$$
$$\times \ e^{-\frac{d_1^2 + d_2^2 + 2(d_1 + d_2)x\cos(\phi/2) - 2(d_2 - d_1)s\sin(\phi/2)}{2\sigma_x^2}}.$$

After integration over x:

$$L = \frac{N_1 N_2 f n_b}{8\pi^{\frac{3}{2}} \sigma_s} \quad 2\cos\frac{\phi}{2} \quad \int W \cdot \frac{e^{-(As^2 + 2Bs)}}{\sigma_x \sigma_y} ds$$

with:

$$A = \frac{\sin^2 \phi/2}{\sigma_x^2} + \frac{\cos^2 \phi/2}{\sigma_s^2} \qquad B = \frac{(d_2 - d_1)\sin(\phi/2)}{2\sigma_x^2}$$

and
$$W = e^{-\frac{(d_2 - d_1)^2}{4\sigma_x^2}}$$
 (important, see later !)

\implies After integration: Luminosity with correction factors

Luminosity with correction factors

$$L = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot \mathbf{W} \cdot e^{\frac{B^2}{A}} \cdot \mathbf{S}$$

- \longrightarrow W: correction for beam offset (one per plane)
- \rightarrow S: correction for crossing angle
- $\rightarrow e^{\frac{B^2}{A}}$: correction for crossing angle and offset

(if in the <u>same</u> plane)

What about crossing in both planes (e.g. LHCb in the LHC) ???

Next: Hour glass effect

Remember the insertion: β -functions depends on longitudinal position s

Remember the insertion: β -functions depends on longitudinal position s

In our low β insertion we have: $\beta(s) \approx \beta^* \left(1 + \left(\frac{s}{\beta^*}\right)^2\right)$

For small β^* the beam size grows very fast: $\approx \frac{s^2}{\beta^*}$

Beam size σ depends on longitudinal position s

Contribution to luminosity depends on longitudinal position s !

Beam size has shape of an Hour Glass

Hour glass effect - short bunches

Small variation of beam size along bunch

(Picture shows LHC values)

Hour glass effect - long bunches

Significant variation for long bunches and small β^*

$$\square$$
 β -functions depends on position s

Need modification to the overlap integral

Usually:
$$\beta(s) = \beta^* \left(1 + \left(\frac{s}{\beta^*} \right)^2 \right)$$

• i.e.
$$\sigma \implies \sigma(s) \neq \text{const.}$$

• $\sigma(s) = \sigma^* \sqrt{1 + \left(\frac{s}{\beta^*}\right)^2}$

Then the same procedure as before, but watch out for the longitudinal integration now.

Important when β^* comparable to the r.m.s. bunch length σ_s (or smaller !)

Here just for one plane, becomes more laborious for flat beams (see literature)

Using the expression: $u_x = \beta^* / \sigma_s$

Without crossing angle and for symmetric, round Gaussian beams we get the relative luminosity reduction as:

$$\frac{L(\sigma_s)}{L(0)} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} \frac{e^{-u^2}}{\left[1 + \left(\frac{u}{u_x}\right)^2\right]} du = \sqrt{\pi} \cdot u_x \cdot e^{u_x^2} \cdot \operatorname{erfc}(u_x)$$

$$L(\sigma_s) = L(0) \cdot \mathbf{H}$$
 with: $\mathbf{H} = \sqrt{\pi} \cdot u_x \cdot e^{u_x^2} \cdot \operatorname{erfc}(u_x)$

Complicated situations may need numerical intengration

Now LHC works with β^*/σ_s larger than 4 (nominal above 7)

Luminosity with (more) correction factors

$$L = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot \frac{W}{W} \cdot e^{\frac{B^2}{A}} \cdot S \cdot H$$

- \rightarrow W: correction for beam offset
- \rightarrow S: correction for crossing angle
- $\rightarrow e^{\frac{B^2}{A}}$: correction for crossing angle and offset
- \rightarrow *H*: correction for hour glass effect

Calculations for the (nominal) LHC

$$N_1 = N_2 = 1.15 \times 10^{11}$$
 particles/bunch

$$\square$$
 $n_b = 2808$ bunches/beam

$$f = 11.2455 \text{ kHz}, \phi = 285 \mu \text{rad}$$

$$\square \quad \beta_x^* = \beta_y^* = 0.55 \text{ m}$$

$$\Box \quad \sigma_x^* = \sigma_y^* = 16.6 \ \mu \text{m}, \ \sigma_s = 7.7 \ \text{cm}$$

Simplest case
$$L_0$$
 (Head on collision)

 $L = 1.200 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

$$L = 0.973 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

$$L = 0.969 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

But there is more:

For large amplitude particles: collision point CP longitudinally displaced

they do not meet the centre of the other beam at the smallest β^* (at IP)

For large amplitude particles: collision point CP longitudinally displaced

they do not meet the centre of the other beam at the smallest β^* (at IP)

Can introduce coupling (transverse and synchro betatron, bad for flat beams)

- A particle's collision point (centre of other beam) amplitude dependent
- Different (vertical) β functions at collision points (not to scale) Only small (zero) amplitude particle collide at minimum β^*

- A particle's collision point (centre of other beam) amplitude dependent
- \rightarrow Different β functions at collision points (hour glass like !)

A fix: crossing angle plus "crab waist" scheme

• Make vertical waist (β_y^{min}) also amplitude (x) dependent

"Different particles" have diferent waists

All particles in both beams collide in minimum β_y region

"crab waist" (or "crabbed waist") scheme

- **Make vertical waist (minimum of** β) amplitude (x) dependent
- Without details: can be done with two sextupoles
- First tried at DAPHNE (Frascati) in 2008
- Geometrical gain small, it is <u>not</u> the issue
 - Less betatron and synchrotron coupling
 - Good remedy for flat (i.e. lepton) beams with large crossing angle

Luminosity in Operation

(Courtesy X. Buffat)

- Luminosity evolution as function of time in LHC during 2 typical days
- Run time up to 15 hour
- Preparation time 3 4 hours

What really counts: Integrated luminosity

$$L_{\rm int} = \int_0^T L(t)dt$$

 $L_{\text{int}} \cdot \sigma_p = \text{total}$ number of events observed of process p

Unit is: cm^{-2} , i.e. inverse cross-section

Often expressed in inverse barn

1 fb⁻¹ (inverse femtobarn) is $10^{39} cm^{-2}$

for **1** fb⁻¹: requires 10^5 s running at $L = 10^{34} cm^{-2} s^{-1}$

Assume:

You are interested in σ(pp → X + H → γγ) ≈ 50 fb (femtobarn)
You have: accumulated 20 fb⁻¹ (inverse femtobarn)
You have: 20 fb⁻¹ · 50 fb = 1000
You have: 1000 events of interest in your data !!

But you have to find them !

A popular story: Clean and Dirty machines ...

 \sim Cross section into hadrons : $\approx 100 \text{ mb} \approx const.$ рр

	\mathbf{E}_{beam} (GeV)	L	events/s	events/d	events/year
LHC	7000	1.0 10 ³⁴	$1.0 10^9$	$1.4 10^{14}$	4.5 10 ¹⁶
LHC	7000	5.0 10 ³⁴	5.0 10 ⁹	7.0 10 ¹⁴	22.5 10 ¹⁶

 $e^+e^ \longrightarrow$ Cross section into hadrons :

 $\frac{22 \text{ nb GeV}^2}{E_{beam}^2}$

	E_{beam} (GeV)	L	events/s	events/d	events/year
LEP	55	1.0 10 ³⁴	0.07	6000	2 10 ⁶
LEP	100	1.0 10 ³⁴	0.02	2000	7 10 ⁵
	1000	1.0 10 ³⁴	0.0002	20	7 10 ³

Simultaneous interactions per crossing - pile-up

• Only an issue for hadron (pp) colliders (see previous slide)

LHC at <u>nominal</u> luminosity: Per bunch crossing more than 20 interactions pile-up (much more in the future)

Bunch crossing every 25 ns (can you think of another problem ?)

Very difficult to handle by the detectors:

Ideal: Operate all the time at maximum digestible luminosity

A possible fix - Luminosity Levelling:

- at the start adjust the luminosity to ideal level
- keep it constant during all data taking, options are:
- decreasing β^* during a run to maintain this level (was done at SPS collider)
- separate the beams and adjust to get the desired luminosity (remember the W): already done in LHCb

The relevance of integrated luminosity:

A very popular picture (shown many times at CAS and elsewhere) Find the Higgs !

The relevance of integrated luminosity:

A very popular picture (shown many times at CAS and elsewhere) Find the Higgs !

Although sometimes claimed to be obvious:

→ Nobody knows whether it is a Higgs and where !!!

Why (and this is one reason why we want high integrated luminosity)?

The "excess" increases proportionally to integrated luminosity - the background does not !

Higher integrated luminosity increases signal over background ratio ! (when particlists take about 3σ , 4σ , 5σ ,... signals)

One needs to get a signal proportional to interaction rate Beam diagnostics

Dynamic range can be very large: 10^{27} cm⁻²s⁻¹ to 10^{34} cm⁻²s⁻¹

Should be very fast, if possible for individual bunches

Should also be used for optimization

But for absolute luminosity needs calibration

Luminosity calibration

Remember the basic definition:

$$\frac{dR}{dt} = \boldsymbol{L} \times \boldsymbol{\sigma}_p$$

- For a well known and calculable process we know σ_p
- The experiments measure the counting rate $\frac{dR}{dt}$ for this process
- Get the absolute, calibrated luminosity

But: hadron and lepton colliders are very different !

Luminosity calibration - e^+e^-

Use exactly calculable (QED) process: $e^+e^- \rightarrow e^+e^-$ elastic scattering (Bhabha scattering)

Measure coincidence at small angles ($\sigma_{el} \propto \Theta^{-3}$) Low counting rates at high energy ($\sigma_{el} \propto \frac{1}{E^2}$)

Background may be problematic

Luminosity calibration (hadrons, e.g. pp or $p\bar{p}$)

- Must measure beam current and beam sizes
- Beam size measurement:
 - > Wire scanner or synchrotron light monitors
 - > Measurement with beam \dots > remember luminosity with offset
 - Move the two beams against each other in transverse planes (remember the W) (van der Meer scan, ISR 1973 LHC 2012)

From ratio of luminosity $L(\mathbf{d})/L_0 = W = e^{-\frac{1}{4\sigma^2}(d_2-d_1)^2}$

one obtains σ

A problem for very high bunch intensities:

size of bunches can change during the scan (caused by beam-beam effects)

For LHC acceptable, for LEP it changed by a factor 2 !

Absolute value of L (pp or $p\bar{p}$) by Coulomb normalization

Look at elastic scattering $pp \rightarrow pp$ which has 2 contributions

The Coulomb contribution f_C exactly calculable, however the nuclear part f_N is not, try to separate them:

$$\sum_{t \to 0} \frac{d\sigma_{el}}{dt} = \frac{1}{L} \frac{dN_{el}}{dt}|_{t=0} = \pi |f_C + f_N|^2$$

$$\simeq \pi |\frac{2\alpha_{em}}{-t} + \frac{\sigma_{tot}}{4\pi}(\rho+i)e^{-\frac{b}{2}t}|^2 \simeq \underbrace{\frac{4\pi\alpha_{em}^2}{t^2}|_{|t|\to 0}}_{calculable}$$

Coulomb contribution strongly dominates at small scattering angles Measure $\frac{d\sigma_{el}}{dt}$ at very small angles and you get: *L*

(t measures the momentum transfer (related to the scattering angle) for elastic scattering)

Measure dN/dt at small t : (t < 0.001 (GeV/c)²) and extrapolate to t = 0.0 Needs special optics to go to small t : very large β^*

To measure at small t (e.g. close to beam): beam divergence σ' must be very small, i.e. particle trajectories almost parallel

$$ightarrow$$
 since $\sigma'~=~\sqrt{\epsilon/eta^*}$ one should have a very large $~eta^*$ (≥ 2000 m)

Rule of thumb: σ' more than 5 times smaller than typical scattering angle Can hope for a precision of 1 - 2 %

First glance at beam-beam effects - almost verbatim

Remember:
$$L = \frac{N_1 N_2 f n_B}{4\pi \sigma_x \sigma_y} \cdot W \cdot S \cdot H = \frac{N_1 N_2 f n_B}{4\pi \cdot \sigma_x \sigma_y} \cdot W \cdot S \cdot H$$

High luminosity is not good for beam-beam effects ... Beam-beam effects are not good for high luminosity ...

It will cause (amongst many others):

- **WERY** large tune spread (\approx 4 times for uncorrected chromaticity)!
- Not only tune spread but also <u>excites</u> nonlinear betatron and synchrobetatron resonances
- Emittance growth and bad life time
- Sudden, total beam loss, Multi bunch coherent modes
- Orbit, Tune and Chromaticity changes, also different from bunch to bunch (further increase of total tune/orbit/chromaticity spread)

LHC beam-beam interactions

Two types: head on and long range interactions
 Beams separated, but still same vacuum chamber
 Particles experience distant (weak) forces
 Separation typically 6 - 12 σ (weak, but many: 120)

Head on first: Force for round Gaussian beams

Simplification 1: $\sigma_x = \sigma_y = \sigma$, $Z_1 = -Z_2 = 1$ Simplification 2: very relativistic $\rightarrow \beta \approx 1$

Force has only radial component, i.e. for round beams depends only on distance **r** from bunch centre where: $r^2 = x^2 + y^2$

$$F_r(\mathbf{r}) = -\frac{Ne^2(1 + \beta^2)}{2\pi\epsilon_0 \cdot \mathbf{r}} \left[1 - \exp(-\frac{\mathbf{r}^2}{2\sigma^2})\right]$$

Form of the kick (as function of amplitude)

- For small amplitudes: linear force (like quadrupole), the same in both planes ! Slope is $\frac{N}{\epsilon n}$ independent of beta* and energy
 - Focusing (or defocusing) in both planes !! But:

For large amplitudes: very non-linear force

Non-linear force: Amplitude detuning

 $\rightarrow \Delta Q$ depends on amplitude

- Different particles have different tunes
- Largest effect for small amplitudes

with
$$\xi = \frac{N}{\epsilon_n}$$
 we get: $\Delta Q = \xi \frac{4}{\alpha^2} \left[1 - I_0(\frac{\alpha^2}{4}) \cdot e^{\frac{-\alpha^2}{4}} \right]$

Non-Linear tune shift - two dimensions


```
No single tune in the beam:
Tunes are "spread out"
```

Point becomes a footprint

Tune (of beam centre) shifted to "injection working point"

The spread is \approx 0.004 (one IP) ! Are we worried ??

Quantitatively: Long range kick

Modified "kick" with horizontal separation <u>d</u>:

$$\Delta x'(x+d, y, r) = -\frac{2Nr_0}{\gamma} \cdot \frac{(x+d)}{r^2} \left[1 - \exp(-\frac{r^2}{2\sigma^2}) \right]$$
(with: $r^2 = (x+d)^2 + y^2$)

<u>Red flag:</u> to use this expression, e.g. in a simulation, there is a small complication, was used incorrectly in the past (before 1990 and in Chao Handbook), if interested ask offline

- Tune shift large for largest amplitudes (where non-linearities are strong)
- Size proportional to $\frac{1}{d^2}$
- We should expect problems at small separation
- Footprint is very asymmetric

One observes a "folding" (can easily be understood from the picture)

For small separation, the size of the footprint can be large \rightarrow particle losses

Small crossing angle \iff small separation \iff big problem ?

For too small separation: particles may be lost and/or bad liftime Long range interactions are the bad guys !

- Here one head on beam-beam interaction, many resonances (6th, 8th, 10th, 13th, 26th, ..) seen ...(note: no losses !!)
- Can we reproduce (analytically) this features ??
- Are Hamiltonians good for something ?
- Try a comparison with tracking:

Invariant from tracking: Poincaré section of one IP

- Phase space coordinates (action-angle) plotted each turn
- \rightarrow Shown for particle amplitudes of 5 σ_x and $10\sigma_x$
 - Without beam-beam: a straight line
- Try to use Hamiltonian treatment:

Invariant versus tracking: one IP

One can reproduce and analyse the motion ...

Used for optimization

Buzzword: effective Hamiltonians (maybe 2019) ...

Summary I

Colliders are used exclusively for particle physics experiments

Colliders are the only tools to get highest centre of mass energies

> Type of collider is decided by the type of particles and its purpose

Design and performance must take into account the needs of the experiments

Most likely beam dynamics problem: beam-beam effects
Summary Ib

Colliders are used exclusively for particle physics experiments

- Colliders are the only tools to get highest centre of mass energies
- Type of collider is decided by the type of particles and its purpose
- Design and performance must take into account the needs of the experiments
- Most likely beam dynamics problem: beam-beam effects
- But if you have to fight elephants: Hamiltonians are you gun
- Maybe something on that: Danmark 2019

Bibliography

Luminosity lectures and basics:

W. Herr and B. Muratori, *Concept of Luminosity*, CERN Accelerator School, Zeuthen 2003, in: CERN 2006-002 (2006).

A. Chao and M. Tigner, *Handbook of Accelerator Physics and Engineering*, World Scientific, (1998).

T. Pieloni, *Beam-beam effects*, CAS, Advanced Accelerator Physics, 2017, Egham, UK.

W. Herr, *Nonlinear Dynamics: Methods and Tools*, CAS, Advanced Accelerator Physics, 2017, Egham, UK.

Linear colliders

- **Mainly (only)** e^+e^- colliders
- Past collider: SLC (SLAC)
- Under consideration: CLIC, ILC
- **Special issues:**
 - > Interaction cross section low for e^+e^- collisions requires very high luminosity
 - Particles collide only once (dynamics) !
- Must be taken into account

Luminosity in linear colliders

Single pass: replace frequency f by repetition rate f_{rep} .

$$L = \frac{N^2 f n_b}{4\pi\sigma_x\sigma_y} \quad \longrightarrow \quad L = \frac{N^2 f_{rep} n_b}{4\pi\sigma_x\sigma_y}$$

Effective beam sizes $\overline{\sigma}_x, \overline{\sigma}_y$

Effective beam sizes $\overline{\sigma}_x, \overline{\sigma}_y$

$$L = \frac{N^2 f_{rep} n_b}{4\pi \overline{\sigma}_x \overline{\sigma}_y}$$

Enhancement factor H_D due to "pinch effect"

$$L = \frac{H_D \cdot N^2 f_{rep} n_b}{4\pi \overline{\sigma}_x \overline{\sigma}_y}$$

Pinch effect - disruption

Pinch effect - disruption

It is usually described by the "Disruption Parameter":

$$D_{x,y} = \frac{2r_e N \sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)}$$

<u>Meaning</u>: ratio of the r.m.s. bunch length to the focal length of the interaction

For weak disruption $D \ll 1$ and round beams:

$$H_D = 1 + \frac{2}{3\sqrt{\pi}}D + O(D^2)$$

For strong disruption and flat beams: computer simulation necessary, (maybe can get some scaling)

Some numbers: electric field $\vec{E} \ge 10^{12} \frac{V}{m} \longrightarrow \vec{B} \ge 3 \ kT$

Beamstrahlung

- Disruption at interaction point is basically a strong "bending"
- Results in strong synchrotron radiation: beamstrahlung
- This causes (unwanted):
 - Spread of centre-of-mass energy
 - Pair creation and detector background
- Again: luminosity is not the only important parameter

Not treated :

- **Coasting beams (e.g. ISR)**
- Asymmetric colliders (e.g. PEP, HERA, LHeC)
- → All concepts can be formally extended ...

Luminosity in a nutshell

$$L = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{\frac{B^2}{A}} \cdot S \cdot H$$

Are there limits to what we can do ?

Yes, there are **beam-beam effects**

In LHC: $\approx 10^{11}$ collisions with the other beam per fill !!

$$L = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{\frac{B^2}{A}} \cdot S \cdot H$$

Summary

Colliders are used exclusively for particle physics experiments

- Colliders are the only tools to get highest centre of mass energies
- > Type of collider is decided by the type of particles and its purpose
- Design and performance must take into account the needs of the experiments
 - Not the highest, but highest <u>useful</u> Luminosity

Most likely a mean saboteur: beam-beam effects

Bibliography

Luminosity lectures and basics:

W. Herr and B. Muratori, *Concept of Luminosity*, CERN Accelerator School, Zeuthen 2003, in: CERN 2006-002 (2006).

A. Chao and M. Tigner, *Handbook of Accelerator Physics and Engineering*, World Scientific, (1998).

- BACKUP SLIDES -

If the beams are not Gaussian ??

Assume flat distributions (normalized to 1)

$$\rho_1 = \rho_2 = \frac{1}{2a} = \rho,$$
 for $[-a \le z \le a]$, $z = x, y$

Calculate r.m.s. in x and y:

$$\langle x^2 \rangle = \int_{-\infty}^{+\infty} x^2 \cdot \rho(x, y) dx dy \qquad \langle y^2 \rangle = \int_{-\infty}^{+\infty} y^2 \cdot \rho(x, y) dx dy$$

and
$$L_p = \int_{-\infty}^{+\infty} \rho^2(x,y) \, dx dy$$

Compute: $L_p \cdot \sqrt{\langle x^2 \rangle \cdot \langle y^2 \rangle}$

Repeat for various distributions and compare

Rare interactions and high energy

 \blacktriangleright Often seen: cross section σ for Higgs particle

Typical channels

Rare interactions and high energy

→ Typical channels

Maximising Integrated Luminosity

Assume exponential decay of luminosity $L(t) = L_0 \cdot e^{t/\tau}$

Average (integrated) luminosity
$$< L >$$

 $< L > = \frac{\int_0^{t_r} dt L(t)}{t_r + t_p} = L_0 \cdot \tau \cdot \frac{1 - e^{-t_r/\tau}}{t_r + t_p}$

[(Theoretical) maximum for: $t_r \approx \tau \cdot \ln(1 + \sqrt{2t_p/\tau} + t_p/\tau)$

- $oxedsymbol{B}$ Example LHC: t_ppprox 10h, aupprox 15h, \Rightarrow t_rpprox 15h
- Exercise: Would you improve au (long t_r) or t_p ?