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The Standard Model of Particle Physics
+ And the Higgs boson...

Looking for the Higgs

¢ A new boson at =126 GeV!

+ Studying its properties

Is this all there is to Nature?

+ Searching for New Physics; e.g.
Supersymmetry?

Outlook
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Standard Model of Particle
Physics

The main ideas
Intermediate vector bosons and their massleness
The Higgs mechanism



Nature: “forces” between particles?

Gravity == action-at-a distance: separated objects, in
the vacuum, act on each other!

The “charge” of gravity: mass — the substance of
matter!

What about electricity and magnetism? Same as
gravity; except two charges (like ones repel, opposite
ones attract). But same spooky “action-at-a-distance,
through the vacuum”
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Nature: “forces’ ?!?

Maxwell and electromagnetism: the
concept of a field; charges generate
fields which (can) permeate all of
space... Other “charges” feel this
field — and thus they feel a force. ANE
The incredible discovery: the E/B fields can exist alone
— they propagate in waves in the vacuum! Thus are

radio, TV and cell-phones made possible.
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20t century: two more forces at work

But nuclei are held But nuclei also “break”!
together — against the Radioactivity! Neutrons
electrostatic repulsion. @ become protons.

So there is yet another type  So there is yet another type
of force! of force!

It must be very, very strong. And it is very, very weak.

There are, in total FOUR
different forces in nature:
Gravity, Electromagnetism,
Weak Force, Strong Force
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FOUR?7?7?

What makes them different?
Are all of them “needed”?
Why not just one?

The two scientific revolutions of
the 20" century (Relativity and
Quantum mechanics) provide

(most of) the answers



20t century physics: quantum mechanics
and relativity
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Classical Mechanics: light waves

o s . ~

Apparent continuity of lig

But: when “zooming in” on light... ™
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Quantum Mechanics: discreteness

“Zooming in” on light... Light “comes” In
discrete units — corpuscules — particles!

| Corpuscular Theory of Light
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Quantum Field Theory

Relativity Theory + Quantum mechanics:
a new picture of what is a “force”

Ly = _qu}/ﬂA/ﬂ// f i

FORCE IS THE EXCHANGE OF PARTICLES!

[}

e——D—f
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Classical and Quantum picture of “force”

Classical Field E(r)

Q E Q, 0 00
 p F=E0)Q=570,= T2
Q, Q, Exchange of a virtual
MM/V\ANWH :
g = particle of momentum ¢:

h h dg h :quhc

qrzh:Q~—:qz—=> ~ ~
r ct dt ct’ dt r’
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Force = exchange of particle

The most basic process: a fermion (matter particle)
emits/absorbs a boson (force particle)

A .
S Infinite
Speed
: Moving
/ particle
Particle at rest
+
>
t
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Feynman diagrams (l)

Have to draw all possibilities

+ We do not know whether X was emitted by A and absorbed by
B or the opposite

+ So: Xis drawn vertically [though it does not have infinite v]

=
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Feynman diagrams (ll)

Exchange Diagrams

+ Particle A scatters off of particle B by exchanging intermediate
particle X. If X is a photon, then the final particles C and D are
the same as A and B.

D B D

>

The interaction, as seen in t
the laboratory frame

Schematic representation of the collision
in terms of a Feynman diagram.
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Feynman diagrams (lll)

Annihilation and Creation (Formation) diagrams

+ Incoming particles A and B collide, forming an intermediate
particle X, which in turn decays into particles C and D

A

S A C

/(
B D

D
>
The interaction, as seen in t
the laboratory frame Schematic representation of the collision in

terms of a Feynman diagram. Note that vertices
conserve charge/momentum
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Weak interaction

Betadecayn—>p+e +V,
—p
electron
O
neutron proton ~
O
antineutrino x
e
w- —
Ve
d >
Mediated by charged d :
u
d
u
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Standard Model of Particle Physics

Quantum Field theory: matter particles (spin-1/2)

interact via the exchange of force particles (spin-1)
Electroweak
m Electromagnetic m pessss————n  \\/ogk S———

. +\ g y\“ /q ;harged >Niutrel q \ gw / q
/7 N\ < 2 <

e q
e+ \ / e+
<
ﬂ
e e
Range =, relative strength =102 Range ~10-"®m, relative strength ~10-14 Range ~ 10-5 m, relative strength = 1

Interactions — need charges. Which should be

conserved. Implies some new symmetry...
¢ Internal symmetry (SU(3)xSU(2)xU(1)) — massless bosons
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FAQ: how to make a universe
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Except... We got a basic issue wrong.

Because the range of the weak force
IS very small.

Which means the carrier must be massive.
Very massive!

Mathematical Interlude



Quantum mechanics and Relativity

Classical Energy = Schrodinger’s equation:

’ . h’ 0
E=§—m+V(r) = —%Vz/HV( )¢=zha—‘f

Klein-Gordon equation:

2

E’=p’c’ +mict = 2 —¢=-hc'Vig+m'c'y

ot
Static potential (forgetting time dependence)
, V) mc’
VIV (r)= ——| r*=— 4
g ()= 7 ar( 8r) h (")
U(r)= —e‘”R R—i
4rr mc
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What IS mass?

Newton: mass is the property
of a particle — the one that
makes it resist changes in its
motion.

A particle travelling in empty
space continues travelling in a
straight line (“forever”)



Quantum Vacuum: anything but “empty”

‘ \
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The full quantum vacuum...

o
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Brout-Englert-Higgs mechanism

Generate masses for the fundamental particles
(some of the bosons of the EWK interaction
AND the fermions that make up matter)

+ M(y)=0; M(W)=80 GeV/c2; M(Z)=90 GeV/c?

BUT: this has to take place starting from an
overall symmetric “universe” in which there is
“no difference” in the way the photon and the
W/Z appear

+ We cannot add mass terms by hand (due to the
original symmetry “gauge invariance”)

+ How can we end up with an asymmetric world [in
which M(W)#M(v)] when the laws are symmetric?
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Standard Model & Symmetry Breaking

Potential with two minima

+ “Law of nature”: potential. O
(V(x)—Lagrangian
—eqns of motion)

Can be Left-Right
symmetric while

equilibrium state is not o o

Laws: LR symmetric;
but low-energy world
need not be!

+ Ball chooses one of the
two minima — Left-Right
symmetry is “broken”
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BEH mechanism in words

There is a new field — which is different from
ALL others: it has no spin at all (so, not a
matter field, and not a boson that transmits a
force)

It’s everywhere - filling up all space. It’s in the
vacuum - and interacts with anything that
travels in the “vacuum”.

Thus: point particles, travel in a “sea” made by

the Higgs Field. They meet resistance...
Inertia... Mass.

Quantum Mechanics: particle (a boson)
corresponding to the field. The Higgs boson.
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The Higgs Mechanism: mathematics

With two independent
(complex) fields (4 DoFs)

Two “motions” in the potential

+ One on the plane; “massless”
mode that is lost (once a
direction is chosen). Each
degree of freedom appears as
additional degree of freedom of a
gauge boson

e Extra polarization state
e The boson becomes massive!

¢+ One up/down on potential;
massive

e Higgs boson; for which we
know everything, except one
parameter: its mass!

Vig)

\

> 77

Thus were the W/Z
masses born in theory;
and discovered (at the
right value) @ CERN in
1984.
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W and Z discovery

In 1983, the W and Z particles were discovered at CERN
(UA1 and UA2)

+ 1984 Nobel Prize to Simon van der Meer and Carlo Rubbia

Sneak preview: at that point, the Higgs boson became
the last important missing piece of SM!
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The Standard Model up until 2012

FERMIONS*
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Standard Model of Particle Physics

Le pts
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LHC(t,+At=2.5yrs):

Foundations established
a “tour de force” of SM measurements

and, of course,
the hunt for the Higgs boson...



The problem: the backg
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The LHC: signals much smaller than “bkg™

General event properties

Heavy flavor physics

Standard Model physics

+ QCD jets
+ EWK physics
o Top quark

Higgs physics
Searches for SUSY
Searches for ‘exotica’
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A EXPERIMENT

M, = 4.04 TeV
P," = 1850 GeV,
n= 0.32

P-2=1840 GeV,
n=-0.53

20 30 100 200

To probe the hard s

+ The hard scatter: jet
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W/Z at 7 TeV: (still) clean & beautiful

Z — electron + positron

CMS Experiment at LHC, CERN
CMS * Run 133877, Event 28405693
f| Lumi section: 387
Sat Apr 24 2010, 14:00:54 CEST

Electrons p;=34.0,31.9 GeV/c
Inv. mass =91.2 GeV/c2

Run Number: 152409, Event Number: 5966801
Date: 2010-04-05 06:54:50 CEST

W-ev candidate in

7 TeV collisions
p,(e+) =34 GeV

n(e+)= -0.42

E,™s: = 26 GeV

M, =57 GeV

A
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Standard Model Measurements

June2016 CMS Preliminary

R i 7 TeV CMS measurement (L < 5.0 fb™)
R # 8 TeV CMS measurement (L < 19.6 fb™)

: L : : : : : : : i 13 TeV CMS measurement (L < 2.7 fb™)

snjet(s) - - tohhonon — Theory prediction
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What about the Higgs boson?

Some “signatures”



®

. w3

CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
Run/Event: 194108 / 564224000

H-




pr(n)= 36, 48, 26, 72 GeV; m,,= 86.3 GeV, m;,= 31.6 GeV

15 reconstructed vertices
N N/ 7 i —
e —— QATLAS
EXPERIMENT
http://atlas.ch

_ / i i _

— S N

= o == -/
S = :, ———

—

candidate with
mg,,= 125.1 GeV
7

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST



H—ZZ—pupee candidate
with m, = 125.1 GeV

s = u*(Z,) py: 43 GeV

e~ (£,) pr:

8 TeV DATA 10 GeV

4-lepton Mass : 126.9 GeV

e

e*(Z3) pr:
21 GeV

CMS Experiment at LHC, CERN

Data recorded: Mon May 28 01:35:47 2012 CEST
Run/Event: 195099 / 137440354

Lumi section: 115

m-=(Z,) py:
24 GeV
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Are these events “significant”?

Discovery of a new boson



Mass peaks: H(?)—yy & H(?)—=ZZ—4leptons

Despite the low branching fraction to the final state, the
mass resolution of these two channels enables the siting
of a “peak”. The ZZ peak has a Z calibration as well(!)
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Putting it all together...
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And thus was born,
on July 4t 2012,

“a new boson with mass ~126 GeV”’;
it decayed to two bosons

(two y; two Z; two W)

It is not spin-1: it decays to two
photons (Landau-Yang theorem)

It is either spin-0 or spin-2 fcou_ld also be
higher spin, but this Is really disfavored)



Couplings to particles
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H—ZZ—4leptons: angular analys

Matrix Element Likelihood Analysis:
uses kinematic inputs for

signal to background discrimination
{m,,m,,0,,0,,6*,0,0,}

Prig(mi,ma, 01,02, @, 0%, ®1|myy) !
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Scalar or pseudoscalar? Spin 2 or 0?

Test angular distributions Test angular distributions
under both the 0* and 0- under both the 2* and 0*

hypotheses hypotheses

CMS preliminary Vs=7TeV.L=51f"Vs=8TeV,L=19.6 5’ CMS prelimina ry Vs=7TeV,L=51f5"ys=8TeV,L=19615"
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So is this it?

In a world of an SM Higgs, is there any
room for new physics?



Learning from history

With the discovery of the Higgs boson, the Standard
Model (SM) is now complete
+ The SM provides a remarkably accurate description of
experiments with and without high-energy accelerators.
With the physics of the very small [thought to be]
understood at energy scales of at least 100 GeV, the
situation is reminiscent of previous times in history
when our knowledge of nature was deemed to be
“complete”.

. Lord Kelvin (1900):

&0 There is nothing new to be discovered

in physics now. All that remains is more
and more precise measurement.
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Dark matter

Dark
(invisible)
matter!

Probably the biggest mystery in
- nature (as we speak)

New type of matter?
New forces?
New dlmensmns’?
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The magic of the Higgs boson mass

Quantum Mechanics: ultimate destructor
of small numbers (in nature) not protected by
some symmetry (thus “law”)

Higgs boson: the ultimate example.

J=1 J=1/2 O J=0
mz(p2)=m02+ F% + _O +

P.A.M Dirac

2
m’ (p2 ) =m’ (A2 )+ ngﬁ dk’
+ If no new physics up to Planck scallje, then A ~ 10" GeV
e M?2=1234567890123456789012345675432189012 —
1234567890123456789012345675432173136 = 15876 GeV?
Two possible explanations for this:
(a) The A word (b) New Physics
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The A word: anthropic [aka “accident”]

Extreme fine-tuning (ETF) of parameters: no problem!

10-4s: profbns and
neutrons form

Py 7 . 9
|1300kyears: atoms

1Gyrs: glaxies form
form; transparent univ. . .

Of the 10°% possible ways of making a universe, we live
in the one that has this cancellation — so as to ensure
that we end up with a “livable” universe as we know it

*Oxford dictionary: an unfortunate incident that happens unexpectedly and unintentionally, typically resulting in damage or injury
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The NP word(s): this is no accident

Strong dependence of Physics(Agk) on Physics(Ap)?

+ It’s like saying that to describe the Hydrogen atom one needs
to know about the quarks inside the proton (not true!)

No way. There must be some physics that cancels
these huge corrections. A straightforward way:

boson fermion
A2 i x< )x =0
VAR
\ gauge
( ] boson gaugino
\ —
ey =0
g’ g g
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Supersymmetry (SUSY)

SUSY (super-symmetry) premise: for every particle in
the SM, there is a super-partner with spin-'z difference
Standard particles SUSY particles

Higgs Higgsino

Quarks ‘ Leptons . Force particles Squarks ) Sleptons 0 SUSY force
particles

Before proceeding, need to explain:

+ Why we have not observed spin-0 electrons (or muons...) up to
now [simple: spartners are heavy; not produced thus far...]

+ Lack of other new phenomena, e.g. why proton does not decay
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Supersymmetry: TO“AE” at the Weak Scale

SUSY is a broken
symmetry!

SUSY partners do not have
the same mass as their
Standard Model
counterparts.

+ Though they are the same In

(essentially) every other
aspect.

Make/keep the mass split
at ~TeV and nature’s
choice of the Higgs boson
mass is... “natural”
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Higgs (mass) is natural ?!
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20
l gauge
\ ] boson gaugino
2
g g g
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SUSY? What it could look [looks?] like

|Jet pT: 393 GeV |

/
/

&

-
| ‘ [Jot pT. 468 GeV

3 \ /‘

Jet pT: 57 GeV| 'ff L::
| m———
- ’ ‘ Jet pT: 214 GeV
Jet pT: 34 GeV ‘\
¥ [MHT = 693 GeV
HT =1132 GeV
MHT: 693 GeV
Meff = MHT+HT = 1.83 TeV
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Constrained MSSM: Highly Constrained...

MSUGRA/CMSSM: tan(B) = 30, A_ = -2mq, 11 > 0

= 10007 T 7 T nT [ T 1 11 LU AL I
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Supersymmetry

The LHC has placed very severe constraints on
Supersymmetry

+ In fact, the more “constrained” models of SUSY are
now almost excluded

¢ So, is it dead? [it seems the press loves to declare
this...]

There is a lot of room still left. But if SUSY is
the answer to the “naturalness” problem, then
there must exist light colored particles

+ Leading hypothesis: a relatively light (~TeV) top
squark (partner of the top quark)

+ Second-to-leading: compressed spectra
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SUSY: searching for the top squark

b/t b/t
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A dizzying exclusion map

ATLAS Exotics Searches* - 95% CL Exclusion

ATLAS Preliminary
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The LHC at 13 TeV vs 8 TeV

100 ———— . — — W. Stirling
ratios of LHC parton luminosities: 13 TeV /8 TeV !

luminosity ratio
o

MSITW20( 8NLO

1000
Mx (GeV) 2TeV 3 TeV
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Outlook
(LHC at 13-14 TeV &

at very high luminosity)

&
Summary



Summary

The Standard Model of particle physics is actually
much more: it’s the Standard Theory of particle physics

+ An elegant description of “interactions”, based on Quantum
Field Theory (special relativity and quantum mechanics)

+ One tricky issue: symmetry breaking. Needed a truly new
mechanism — BEH? There should be a left-over boson

e For decades: missing element — the Higgs boson

A new boson with mass 125 GeV has been found
+ We are probing its properties. It IS a Higgs boson! Is it the SM
Higgs boson? Need to study it in more detail.
Even if this turns out to be the very Higgs boson of the
Standard Model, there are huge reasons to believe that
new physics is within reach;

+ A gigantic amount of work on searches for SUSY, extra

dimensions, etc...; Null so far, but, the best has yet to come!
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