LHC Upgrades and Future Circular Colliders

gratefully acknowledging input from HL-LHC project team, FCC coordination group global design study team and many other contributors.

M. Benedikt

FCC

HL-LHC SPS Particular thanks to O. Bruning and F. Zimmermann for providing some read-to-use slides.

EurဲCirCol

http://cern.ch/fcc

Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305

Outline

- HL-LHC motivation and goals
- HL-LHC building blocks
- FCC motivation and scope
 - Parameters
 - Design Status
 - Technologies

Goal of High Luminosity LHC (HL-LHC)

implying an integrated luminosity of **250 fb⁻¹ per year**,

design oper. for $\mu = 140$ (\rightarrow peak luminosity 5 10³⁴ cm⁻² s⁻¹

Operation with levelled luminosity! (beta*, crossing angle & crab cavity)

→ 10x the luminosity reach of first 10 years of LHC operation!!

Recap: Luminosity

LHC upgrade goals: performance optimization

• Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

- → maximize bunch intensities $(1.1 \rightarrow 2.2 \times 10^{11})$ → Injector complex
- → minimize the beam emittance $(3.75 \rightarrow 2.5 \,\mu\text{m})$ Upgrade LIU
- → minimize beam size ($\beta * 0.55 \rightarrow 0.15$ m);
- \rightarrow compensate for 'F' geometry crossing;
- → improve machine 'Efficiency'

- → New triplets
- → Crab Cavities
- minimize number of unscheduled beam aborts

LHC Limitations and HL-LHC challenges

- Insertion quadrupole magnets lifetime and aperture:
 - \rightarrow New insertion magnets and low- β with increased aperture
- Geometric Reduction Factor: → SC Crab Cavities
 - → New technology and a first for a hadron storage ring!
- Performance Optimization: Pileup density → Lumi levelling
 - → requires virtual luminosity >> target levelled luminosity
- Beam power & losses → addt'l collimators in dispersion suppressors
- Machine effciency and availability:
 # R2E → removal of all electronics from tunnel region
 # e-cloud → beam scrubbing (conditioning of surface), etc
- Technical bottle necks (e.g. cryogenics)
- Civil Engineering (underground)

LHC technical bottleneck: Radiation damage to triplet magnets at 300 fb-1

HL-LHC and FCC Michael Benedikt CAS, Chavannes-de-Bogis, 10 Feb. 2017

HL-LHC technical bottleneck: Radiation damage to triplet magnets

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magr coils receive a similar radiation dos @ 10 times higher integrated luminosity 3000 fb⁻¹! → Shielding!

- → Requires larger aperture!
- → New magnet technology
- → LHC: 70mm at 210 T/m →HL@ 150mm diameter 140 T/m
- → LHC: 8T peak field at coils → HL> 12T field at coils (Nb₃Sn)!

Tungsten blocks

Conline tuber

(0121)

US-L

magi Base

technology

(4x)018

Tungeten Block 16am

HL-LHC Challenges: Crossing Angle

• Parasitic bunch encounters:

Operation with ca. 2800 bunches @ 25ns spacing → approximately 30 unwanted collisions per Interaction Region (IR).

Operation requires crossing angle prop. $1/\sqrt{\beta^*}$. → Factor 2 increase, 2 x 150 to 2 x 300 µrad)

Perturbations from long-range beam-beam interaction: efficient operation requires large beam separation at unwanted collision points \rightarrow Separation of 10 -12 σ \rightarrow larger triplet apertures for HL-LHC!

HL-LHC Upgrade Ingredients: Crab Cavities

Geametrictiesminosity

- Reduction Factor:
 Reduces the effect of geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Challenging space constraints:
 - requires novel compact cavity design

HL-LHC crab cavity designs

HL-LHC and FCC Michael Benedikt CAS, Chavannes-de-Bogis, 10 Feb. 2017

LHC Challenges: Beam Power

Unprecedented beam power:

Collimation system upgrades

Dispersion Suppressor collimators – 11 T Nb3Sn Dipole (LS2 -2018)

HL-LHC and FCC Michael Benedikt CAS, Chavannes-de-Bogis, 10 Feb. 2017

Implementation & Performance Projection:

CAS, Chavannes-de-Bogis, 10 Feb. 2017

The critical zones around IP1 and IP5

3. For collimation we also need to change the DS in the continuous cryostat:
11T Nb₃Sn dipole

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector New triplet Nb₃Sn required due to:
 Radiation damage
 Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

More than 1.2 km of LHC !! Plus technical infrastructure (e.g. Cryo and Powering)!!

Luminosity profile : NOMINAL HL-LHC

- Very large circular hadron collider only feasible approach to reach 100 TeV c.m. collision energy in coming decades
- Access to new particles (direct production) in few-TeV to 30 TeV mass range, far beyond LHC reach
- Much-increased rates for phenomena in sub-TeV mass range → much increased precision w.r.t. LHC

M. Mangano

Hadron collider energy reach

$$E \propto B_{dipole} \times \rho_{bending}$$

FCC-hh aims at O(10) higher performance (E, L) than LHC

LHC: factor ~4 in radius, factor ~2 in field \rightarrow O(10) in E_{cms}

Future Circular Collider Study Goal: CDR for European Strategy Update 2018/19

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- **80-100 km tunnel infrastructure** in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- *p-e (FCC-he) option,* integration one IP, FCC-hh & ERL
- HE-LHC with FCC-hh technology

CepC/SppC study (CAS-IHEP) 100 km (new baseline!), e⁺e⁻ collisions ~2028; *pp* collisions ~2042

50 km

526

Image 2013 DigitalGlobe Data SLO, DOAA, U.S. Navy, NGA, GEBCO

高能所

2102

Qinhuangdao (秦皇岛)

easy access 300 km east from Beijing 3 h by car 1 h by train

Google earth Yifang Wang

\$363

抚宁县。

100 km

CERN

CepC, SppC

山海关IX

CERN Circular Colliders & FCC

Must advance fast now to be ready for the period 2035 – 2040 Goal of phase 1: CDR by end 2018 for next update of European Strategy

Progress on site investigations

HL-LHC and FCC Michael Benedikt CAS, Chavannes-de-Bogis, 10 Feb. 2017

Progress on site investigations

Alignment Shafts Query	Alignment I	Alignment Location			Geology Intersected by Shafts			Shaft Depths				
Choose alignment option	+			1 181	Dalat	Actual	Molecce CA	Shaft Depth (m)	Oustemany	Melana	Geology (n	n) Calcala
Tunnel elevation at centre 261mASL	1 - 1814				A	304	MOIDSSE 3M	wiiduysch	quaternary 12	213	orgonian	79
		12 2		11. 注意。21. 使用的 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	8	266						
Grad. Params	*				c	257						
Azimuth (*): -20		- But A			D	272						
Slope Angle x-x(%): 0.65				A CONTRACTOR		197						
Slope Angle y-y(%): 0		Alan the No	To the case of the			102						
LOAD SAVE	CALCULATE		CASS STAN			392						
Alignment centre			了。主義行、國家一員		G	354						
X: 2499731 Y: 1108403		Contraction of the second s		Service and the service of the servi	н	268						
CP 1 CF	2	No / C	Q.	A CONTRACTOR OF		170						
Angle Depth Angle D	epth		I is the at 12		J	315						
CHC -64 220m 64 SPC 242m	172m		E alter a fair	all all all	к	221						
TI2 235m	241m	λ . ST			L	260						
Ti8 242m	170m		G		Total	3211	52	0	517	2478	0	109
			A Part									
Alignment Profile												

90 – 100 km fits geological situation well
LHC suitable as potential injector
The 97.75 km version, intersecting LHC, is now being studied in more detail

FCC-hh injector studies

Common layouts for hh & ee

hadron collider parameters (pp)

parameter	F	CC-hh	HE-LHC	(HL) LHC	
collision energy cms [TeV]		100	25	14	
dipole field [T]		16	16	8.3	
circumference [km]		100	27	27	
# IP	2 ו	main & 2	2 & 2	2 & 2	
beam current [A]	0.5		1.27	(1.12) 0.58	
bunch intensity [10 ¹¹]	1 (0.2)	1 (0.2)	2.5	(2.2) 1.15	
bunch spacing [ns]	25 (5)	25 (5)	25 (5)	25	
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55	
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	34	(5) 1	
peak #events/bunch crossing	170	1020 (204)	1070 (214)	(135) 27	
stored energy/beam [GJ]		8.4	1.4	(0.7) 0.36	
synchrotron rad. [W/m/beam]		30	4.1	(0.35) 0.18	

pp/p-pbar in the *L-E* plane

luminosity evolution over 24 h

phase 1: $\beta^*=1.1$ m, $\xi_{tot}=0.01$, $t_{ta}=5$ h, 250 fb⁻¹ / year phase 2: $\beta^*=0.3$ m, $\xi_{tot}=0.03$, $t_{ta}=4$ h, 1000 fb⁻¹ / year

FCC-hh MDI status

peak dose [MGy]

Design of interaction region

- Distance from IP to first machine quadrupole L^{*}=45 m.
- Allows integrated spectrometers and compensation dipoles (or fwd solenoids)
- Optics and magnet optimization for beam stay clear and collision debris.
 - Magnet (triplet) lifetime should be collider lifetime (from radiation damage).

Beam power & machine protection

Stored energy 8.4 GJ per beam

- Factor 25 higher than for LHC, equivalent to A380 (560 t) at nominal speed (850 km/h). Can melt 12t of copper.

- Collimation, control of beam losses and radiation effects (shielding) are of prime importance.
- Injection, beam transfer and beam dump all critical.

Machine protection issues to be addressed early on!

Hydrodynamic tunneling: beam penetrates ~300 m in Cu

FCC-hh beam dilution system

R&D on Superconducting Septa

Need an extraction system for safely removing the beam from the collider hybrid system: short overall length with high robustness & availability

Synchrotron radiation beam screen prototype

High synchrotron radiation load of proton beams @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs (@1.9 K!!!)

New Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- factor 50! reduction of cryo power

FCC-hh beam screen prototypes Ready for Testing 2017 in ANKA within EuroCirCol study

Cryo power for cooling of SR heat

Overall optimisation of cryo-power, vacuum and impedance Termperature ranges: <20, 40K-60K, 100K-120K

Main SC Magnet system FCC (16 T) vs LHC (8.3 T)

FCC

Bore diameter: 50 mm

Dipoles: 4578 *units*, 14.3 *m long*, 16 $T \Leftrightarrow \int Bdl \sim 1 MTm$

Stored energy ~ 200 GJ (GigaJoule) ~44 MJ/unit

Quads: 762 *magnets*, 6.6 *m long*, 375 *T/m*

LHC

Bore diameter: 56 mm
Dipoles: 1232 units, 14.3 m long, 8.3 T ⇔ ∫ Bdl~0.15 MTm
Stored energy ~ 9 GJ (GigaJoule) ~7 MJ/unit
Quads: 392 units, 3.15 m long, 233 T/m

Nb₃Sn is one of the major cost & performance factors for

FCC-hh and is given highest attention

16 T dipole options and plans

- Down-selection of options end 2017 for detailed design work
- Model production 2018 2022,
- Prototype production 2023 2025

HE-LHC Option

lepton collider parameters

parameter		LEP2				
Physics working point	Z		ww	ZH	tt _{bar}	
energy/beam [GeV]	45.6		80	120	175	105
bunches/beam	30180	91500	5260	780	81	4
bunch spacing [ns]	7.5	2.5	50	400	4000	22000
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
beam current [mA]	1450	1450	152	30	6.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	0.0012
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.34
synchrotron power [MW]		22				
RF voltage [GV]	0.4	0.2	0.8	3.0	10	3.5

identical FCC-ee baseline optics for all energies

FCC-ee: 2 separate rings, LEP: single beam pipe

FCC-ee exploits lessons & recipes from past e⁺e⁻ and pp colliders

FCC-ee optics design

Optics design for all working points achieving baseline performance Interaction region: asymmetric optics design

- Synchrotron radiation from upstream dipoles <100 keV up to 450 m from IP
- Dynamic aperture & momentum acceptance requirements fulfilled at all WPs

FCC-ee MDI optimisation

Efficient 2-in-1 FCC-ee arc magnets

Very large range of operation parameters

- Voltage and beam current ranges span more than factor > 10²
- No well-adapted single RF system solution satisfying requirements

RF system R&D lines

400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)

- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-ZH, ee-tt and ee-WW

- Baseline options 400 MHz Nb/Cu @4.5 K, ◀—▶ 800 MHz bulk Nb system @2K
- R&D: High Q₀ cavities, coating, long-term: Nb₃Sn like components

Collaboration & Industry Relations

FUTURE CIRCULAR COLLIDATE Future Circular Collider Conference **BERLIN, GERMANY** 29 MAY - 02 JUNE fccw2017.web.cern.ch

DPG

Summary

- The HL-LHC upgrade project is in full swing and progressing towards first major installations in LS2.
- The FCC study is advancing well towards the Design Report for end 2018
- Clearly HL-LHC is a necessary first step in the development of technologies for future HE accelerators, in particular the FCC.
- Superconductivity is the key enabling technology for LHC, HL-LHC, HE LHC and FCC.
- The Nb3Sn program for HL-LHC triplets and 11 T dipoles is of prime importance towards development fo 16 T model magnets.
- SC crab cavities are a major ingredient for HL-LHC and the development of high efficiency SRF systems is critical for FCC-ee.
- Both HL-LHC project and FCC study show the importance of international collaboration in our field, to advance on all challenging subjects and to assure a long-term future!
- In this sense we fully rely on your future contributions!

