An introduction to linear imperfections

R. Tomás

CERN Accelerator School,
February 2014
Contents

★ CERN complex
★ Some CERN lattices
★ Imperfections
★ Correction techniques
★ β-beating in the CERN synchrotrons
★ Dynamic imperfections
The LHC Interaction Region (IR)

Longitudinal location from IP [m]

βx, βy [km]

k₁ and θ

IP LHCB1 β*=0.6 m

quads
bends

βx
βy
The first linear imperfection is...

...gravity! The LHC vacuum chamber has a 22 mm radius. Everything takes 67 ms to fall. Why do protons not fall?
Dipole magnetic field

Lorentz force:

\[\vec{F} = q \vec{v} \times \vec{B} \]
Dipole errors

- An error in the strength of a main dipole causes a perturbation on the horizontal closed orbit.
- A tilt error in a main dipole causes a perturbation on the vertical closed orbit.
Quadrupole field and force on the beam

Note that $F_x = -kx$ and $F_y = ky$ making horizontal dynamics totally decoupled from vertical.
The β functions change, β-beating: \(\frac{\Delta \beta}{\beta} = \frac{\beta_{\text{pert}} - \beta_0}{\beta_0} \).

\[
\Delta Q_x \approx \frac{1}{4\pi} \beta_x \Delta k, \quad \Delta Q_y \approx -\frac{1}{4\pi} \beta_y \Delta k
\]
Quadrupole strength error - Tune change

Quadrupole errors can push tunes into resonances (dangerous) \(nQ_x + mQ_y = N \)
Colliders in the resonance world

![Graph showing colliders in the resonance world with a color scale for Log(L [cm^{-2}s^{-1}])]
Interlude: Farey sequences (1802)

The Farey sequence of order \(n \) is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to \(N \rightarrow \text{Resonances of order } N \) or lower (in one plane)

Farey diagram of order 5 (\(F_5 \))
Some properties of Farey sequences

⋆ The distance between neighbors in a Farey sequence (aka two consecutive resonances) \(a/b\) and \(c/d\) is equal to \(1/(bd)\).

⋆ The next leading resonances in between two consecutive resonances \(a/b\) and \(c/d\) is
\[
(a + c)/(b + d).
\]

⋆ The number of 1D resonances of order \(N\) or lower tends asymptotically to \(3N^2/\pi^2\).
Offset quadrupole - Feed-down

An offset quadrupole is seen as a centered quadrupole plus a dipole. This is called feed-down.
A tilted quadrupole is seen as a normal quadrupole plus another quadrupole tilted by 45° (this is called a skew quadrupole).
Skew quadrupole \rightarrow x-y Coupling

Note that $F_x = ky$ and $F_y = kx$ making horizontal and vertical dynamics to couple.
Skew quadrupole \rightarrow x-y Coupling

Coupling makes it impossible to approach tunes below $\Delta Q_{\text{min}} = |C^-|$, where C^- is a complex number characterizing the difference resonance $Q_x - Q_y = N$.
Coupling can push tunes into resonances.
Sextupole field and force

Ooops, We are entering the non-linear regime, however...
Offset sextupole

A sextupole horizontally (vertically) displaced is seen as a centered sextupole plus an offset quadrupole (skew quadrupole). Offset sextupoles are also sources of quadrupole and skew quadrupole errors.
Longitudinal misalignments can be seen as perturbations at both ends of the magnet with opposite signs. Tolerances are generally larger for longitudinal misalignments.
Correction

★ Local corrections

- Ideal correction: Error source identification and repair.
- Effective local error correction.
- MICADO (ISR-MA/73-17): Best few correctors (no guarantee of locality).

★ Global corrections

- Pre-designed knobs for varying particular observables in the least invasive way (like tunes, coupling, β^*, etc.)
- MICADO: Best N correctors
- Response matrix approach
Local correction: segment-by-segment

Key point: Isolate a segment of the machine by imposing boundary conditions from measurements and find corrections.
Pre-designed knobs - Tunes

- In most machines it is OK to use all focusing quads to change Q_x and all defocusing quads for Q_y: PSB, PS, SPS
- In the LHC dedicated tune correctors (MQT) are properly placed to minimize impact on other quantities:
The full control of the difference resonance \((C^-)\) needs two independent families of skew quadrupoles.

PSB, PS and SPS can survive only with one family since \(\int (Q_x) = \int (Q_y)\), making errors in phase with correctors.

In LHC there are two families to vary the real and imaginary parts of \(C^-\) independently.
Best corrector concepts

Elephant = 80 kg.
Available corrector weights: 78 kg, 1 kg, 30 kg, 50 kg

Which is the best corrector?
Which is the best second corrector? (using the 1st)
Which are the two best correctors?
Best N-corrector challenge

- LHC has about 500 orbit correctors per plane and per beam.
- Imagine you want to find the best 20 correctors.
- How many combinations of these 500 correctors taking 20 at a time exist?
- ...
- (MICADO finds a good approximations to this problem)
Response matrix approach

- Available correctors: \(\vec{c} \)
- Available observables: \(\vec{a} \)
- Assume for small changes of correctors linear approximation is good: \(R \Delta \vec{c} = \Delta \vec{a} \)
- Use, e.g., MADX to compute \(R \)
- Invert or pseudo-invert \(R \) to compute an effective global correction based on measured \(\Delta \vec{a} \):

\[
\Delta \vec{c} = R^{-1} \Delta \vec{a}
\]
- This works for orbit, \(\Delta \beta / \beta \), coupling, etc.
Pseudo-inverse via SVD

\[R = U \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{pmatrix} V' \]

Imagine \(\sigma_3 \ll \sigma_2 \), then just neglect it:

\[R^{-1} = V \begin{pmatrix} \frac{1}{\sigma_1} & 0 & 0 \\ 0 & \frac{1}{\sigma_2} & 0 \\ 0 & 0 & 0 \end{pmatrix} U' \]
PSB β-beating

Horizontal Beta Beating – PSB

Peak β-beating of $\approx 5\%$
PS β-beating

Peak β-beating of $\approx 4\%$
SPS β-beating (Q20)

Peak β-beating of $\approx 25\%$
LHC β-beating, before correction

Peak β-beating of $\approx 100\%$!!!
LHC β-beating, after correction

Correction brings peak β-beating to $\approx 7\%$
Dynamic linear imperfections

- Ground motion and vibrations in quadrupoles produce sinusoidal dipolar fields
- Electrical noise can cause currents in quadrupoles and dipole to oscillate in time
- Electromagnetic pollution can act directly on the beam.
- Slow variations \(f \ll Q_{x,y} \times f_{rev} \) just cause a time varying orbit and optics
- Fast variations \(f \approx Q_{x,y} \times f_{rev} \) can cause resonances and emittance growth
An oscillating dipolar field

- Let $Q_{dip} = \frac{f_{dip}}{f_{rev}}$ be the tune of the dipolar field oscillation.

- This causes the appearance of new resonances

- Linear resonances: $Q_x \pm Q_{dip} = N$

- Non-linear resonances of sextupolar order:

 $$Q_x \pm 2Q_{dip} = N$$

 $$2Q_x \pm Q_{dip} = N$$

- Note that $mQ_{dip} = N$ is not a problem
Oscillating dipolar field, $Q_x \neq Q_{dip}$

Orbit oscillates with Q_{dip} but there is no emittance growth far from resonances.
Oscillating dipolar field, $Q_x = Q_{dip}$

Linear growth in time \rightarrow Emittance growth.
An oscillating quadrupolar field

★ Let $Q_{quad} = f_{quad}/f_{rev}$ be the tune of the quadrupolar field oscillation.
★ This causes the appearance of new resonances
★ Linear resonances: $2Q_x \pm Q_{quad} = N$
Oscillating quadrupolar field, $2Q_x \neq Q_{quad}$

Tune is modulated with Q_{quad}, displaying sidebands at $Q_x \pm Q_{quad}$ but there is no emittance growth far from resonances.
Oscillating quadrupolar field, $2Q_x = Q_{quad}$

Exponential growth, clear signatures depending on the oscillating field type.
Questions?