Transverse Beam Dynamics II

II) The State of the Art in High Energy Machines:

The Theory of Synchrotrons:
- Linear Beam Optics
- The Beam as Particle Ensemble
- Emittance and Beta-Function
- Colliding Beams & Luminosity

"... how does it work ?"
"...does it ?"
Astronomer Hill:

differential equation for motions with periodic focusing properties
„Hill‘s equation“

Example: particle motion with periodic coefficient

equation of motion: \[x''(s) - k(s)x(s) = 0 \]

restoring force \(\neq \text{const} \),
\[k(s) = \text{depending on the position } s \]
\[k(s+L) = k(s), \text{ periodic function} \]

we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position \(s \) in the ring.
7.) The Beta Function

„it is convenient to see“ ... after some beer ... general solution of Mr Hill can be written in the form:

Ansatz:

\[x(s) = \sqrt{\epsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi) \]

\(\epsilon, \Phi = \) integration constants determined by initial conditions

\(\beta(s) \) periodic function given by focusing properties of the lattice ↔ quadrupoles

\[\beta(s + L) = \beta(s) \]

\(\epsilon \) beam emittance = wozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely spoken: area covered in transverse x, x’ phase space ... and it is constant !!!

\(\Psi(s) = \) „phase advance“ of the oscillation between point „0“ and „s“ in the lattice.

For one complete revolution: number of oscillations per turn „Tune“

\[Q_y = \frac{1}{2\pi} \int \frac{ds}{\beta(s)} \]
Amplitude of a particle trajectory:

\[x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \varphi) \]

Maximum size of a particle amplitude

\[\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \]

\(\beta \) determines the beam size (... the envelope of all particle trajectories at a given position “s” in the storage ring.

It reflects the periodicity of the magnet structure.
8.) Beam Emittance and Phase Space Ellipse

General solution of Hill equation

\[(1) \quad x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi) \]

\[(2) \quad x'(s) = -\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi) \right\} \]

From (1) we get

\[\cos(\psi(s) + \phi) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\beta(s)}} \]

\[\alpha(s) = \frac{-1}{2} \beta'(s) \]

\[\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)} \]

Insert into (2) and solve for \(\varepsilon \)

\[\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s) \]

* \(\varepsilon \) is a constant of the motion … it is independent of "s"

* Parametric representation of an ellipse in the \(x x' \) space

* Shape and orientation of ellipse are given by \(\alpha, \beta, \gamma \)
Phase Space Ellipse

Particel trajectory: \[x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{ \psi(s) + \phi \} \]

Max. Amplitude: \[\hat{x}(s) = \sqrt{\varepsilon \beta} \]

... put \(\hat{x}(s) \) into \[\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s) \]

and solve for \(x' \)

\[\varepsilon = \gamma \cdot \varepsilon \beta + 2\alpha \sqrt{\varepsilon \beta} \cdot x' + \beta x'^2 \]

\[x' = -\alpha \cdot \sqrt{\varepsilon / \beta} \]

\[\star \text{A high } \beta \text{-function means a large beam size and a small beam divergence.} \]

... et vice versa !!!

\[\star \text{In the middle of a quadrupole } \beta = \text{maximum,} \]

\[\alpha = \text{zero} \]

\[x' = 0 \]

... and the ellipse is flat
Beam Emittance and Phase Space Ellipse

\[x(s) = \sqrt{\epsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \varphi) \]

\[\epsilon = \gamma(s) * x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2 \]

Liouville: in reasonable storage rings
area in phase space is constant.

\[A = \pi\epsilon = \text{const} \]

\(\epsilon \) beam emittance = wozilicity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse \(x, x' \) phase space ... and it is constant !!!
Particle Tracking in a Storage Ring

Calculate x, x' for each linear accelerator element according to matrix formalism

plot x, x' as a function of "s"
... and now the ellipse:

Note for each turn x, x' at a given position "s_1" and plot in the phase space diagram.
Emittance of the Particle Ensemble:
Emittance of the Particle Ensemble:

\[x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\Psi(s) + \phi) \]

\[\dot{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \]

Gauß Particle Distribution:

\[\rho(x) = \frac{N \cdot e^{-\frac{1}{2} \sigma_x^2}}{\sqrt{2\pi}\sigma_x} \]

particle at distance 1 \(\sigma \) from centre \(\leftrightarrow 68.3\% \) of all beam particles

LHC:

\(\beta = 180 m \)

\(\varepsilon = 5 \times 10^{-10} m \text{ rad} \)

\[\sigma = \sqrt{\varepsilon \cdot \beta} = \sqrt{5 \times 10^{-10} m \cdot 180 m} = 0.3 mm \]

aperture requirements: \(r_0 = 12 \times \sigma \)
The „not so ideal“ World
Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder:
Theory of strong focusing in particle beams
Recapitulation: ...the story with the matrices !!!

Equation of Motion:

\[x'' + K x = 0 \quad K = \frac{1}{\rho^2} - k \quad \text{... hor. plane:} \]

\[K = k \quad \text{... vert. Plane:} \]

Solution of Trajectory Equations

\[\begin{pmatrix} x \\ x' \end{pmatrix}_{s_1} = M \ast \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0} \]

\[M_{drift} = \begin{pmatrix} 1 & I \\ 0 & 1 \end{pmatrix} \]

\[M_{focus} = \begin{pmatrix} \cos(\sqrt{K} I) & \frac{1}{\sqrt{K}} \sin(\sqrt{K} I) \\ -\sqrt{K} \sin(\sqrt{K} I) & \cos(\sqrt{K} I) \end{pmatrix} \]

\[M_{defocus} = \begin{pmatrix} \cosh(\sqrt{K} I) & \frac{1}{\sqrt{K}} \sinh(\sqrt{K} I) \\ \sqrt{K} \sinh(\sqrt{K} I) & \cosh(\sqrt{K} I) \end{pmatrix} \]

\[M_{total} = M_{QF} \ast M_D \ast M_B \ast M_D \ast M_{QD} \ast M_D \ast \ldots \]
Geometry of the ring: \[B \rho = \frac{p}{e} \]

\(p \) = momentum of the particle,
\(\rho \) = curvature radius

\(B\rho \) = beam rigidity

Circular Orbit: bending angle of one dipole

\[\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} = \frac{Bdl}{B\rho} \]

The angle run out in one revolution must be \(2\pi \), so for a full circle

\[\alpha = \int \frac{Bdl}{B\rho} = 2\pi \]

\[\int Bdl = 2\pi \frac{p}{q} \]

… defines the integrated dipole field around the machine.
Example LHC:

7000 GeV Proton storage ring
dipole magnets $N = 1232$
\[l = 15 \text{ m} \]
$q = +1 \text{ e}$

\[
\int B \, dl \approx N \, l \, B = 2\pi \frac{p}{e}
\]

\[
B \approx \frac{2\pi \times 7000 \times 10^6 \text{ eV}}{1232 \times 15 \times 3 \times 10^8 \frac{m}{s} \cdot e} = 8.3 \text{ Tesla}
\]
10.) **Transfer Matrix M**

... yes we had the topic already

general solution of Hill’s equation

\[
x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\}
\]

\[
x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left[\alpha(s) \cos \{\psi(s) + \phi\} + \sin \{\psi(s) + \phi\} \right]
\]

remember the trigonometrical gymnastics: \(\sin(a + b) = \ldots\) etc

\[
x(s) = \sqrt{\varepsilon} \sqrt{\beta_s} \left(\cos \psi_s \cos \phi - \sin \psi_s \sin \phi \right)
\]

\[
x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta_s}} \left[\alpha_s \cos \psi_s \cos \phi - \alpha_s \sin \psi_s \sin \phi + \sin \psi_s \cos \phi + \cos \psi_s \sin \phi \right]
\]

starting at point \(s(0) = s_0\), **where we put** \(\Psi(0) = 0\)

\[
\cos \phi = \frac{x_0}{\sqrt{\varepsilon \beta_0}} \quad , \quad \sin \phi = -\frac{1}{\sqrt{\varepsilon}} \left(x'_0 \sqrt{\beta_0} + \frac{\alpha_0 x_0}{\sqrt{\beta_0}} \right)
\]

inserting above ...
\[x(s) = \sqrt{\frac{\beta_s}{\beta_0}} \left\{ \cos \psi_s + \alpha_0 \sin \psi_s \right\} x_0 + \sqrt{\beta_s \beta_0} \sin \psi_s \right\} x_0' \]

\[x'(s) = \frac{1}{\sqrt{\beta_s \beta_0}} \left\{ (\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s \right\} x_0 + \sqrt{\frac{\beta_0}{\beta_s}} \left\{ \cos \psi_s - \alpha_s \sin \psi_s \right\} x_0' \]

which can be expressed ... for convenience ... in matrix form

\[
\begin{pmatrix} x \\ x' \end{pmatrix}_s = M \begin{pmatrix} x \\ x' \end{pmatrix}_0
\]

\[
M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} (\cos \psi_s + \alpha_0 \sin \psi_s) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ (\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s & \sqrt{\frac{\beta_0}{\beta_s}} (\cos \psi_s - \alpha_s \sin \psi_s) \end{pmatrix}
\]

* we can calculate the single particle trajectories between two locations in the ring, if we know the \(\alpha \beta \gamma \) at these positions.
* and nothing but the \(\alpha \beta \gamma \) at these positions.
* \(\cdots \) !
LHC: Lattice Design
the ARC 90° FoDo in both planes

equipped with additional corrector coils

- **MB**: main dipole
- **MQ**: main quadrupole
- **MQT**: Trim quadrupole
- **MQS**: Skew trim quadrupole
- **MO**: Lattice octupole (Landau damping)
- **MSCB**: Skew sextupole
- **MCDO**: Spool piece 8 / 10 pole
- **BPM**: Beam position monitor + diagnostics
A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in.

(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell $\mu = 45^\circ$,
\rightarrow calculate the twiss parameters for a periodic solution
11.) Insertions
\[\beta(\ell) = \beta_0 + \frac{\ell^2}{\beta_0} \]

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice.
-> here we get the largest beam dimension.

-> keep l as small as possible

7 sigma beam size inside a mini beta quadrupole
... clearly there is another problem.

... unfortunately ... in general high energy detectors that are installed in that drift spaces are a little bit bigger than a few centimeters ...
The Mini-β Insertion & Luminosity:

The production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator:

$$R = L \cdot \Sigma_{\text{react}} \approx 10^{-12} \, b \cdot 25 \cdot \frac{1}{10^{-15} \, b} = \text{some} \, 1000 \, H$$

The luminosity is a storage ring quality parameter and depends on beam size (β!!) and stored current

$$L = \frac{1}{4\pi e^2 f_0 \cdot b} \cdot \frac{I_1 \cdot I_2}{\sigma_x \cdot \sigma_y}$$

remember: $1b = 10^{-24} \, \text{cm}^2$
11.) Luminosity

Example: Luminosity run at LHC

\[\beta_{x,y} = 0.55 \text{ m} \]
\[\epsilon_{x,y} = 5 \times 10^{-10} \text{ rad m} \]
\[\sigma_{x,y} = 17 \mu\text{m} \]
\[f_0 = 11.245 \text{ kHz} \]
\[n_b = 2808 \]
\[I_p = 584 \text{ mA} \]

\[L = \frac{1}{4 \pi e^2 f_0 n_b} \frac{I_{p1} I_{p2}}{\sigma_x \sigma_y} \]

\[L = 1.0 \times 10^{34} \frac{1}{cm^2 s} \]
Mini-β Insertions: Betafunctions

A mini-β insertion is always a kind of special symmetric drift space.
⇒ greetings from Liouville

the smaller the beam size
the larger the beam divergence
Mini-\(\beta\) Insertions: some guide lines

* calculate the periodic solution in the arc

* introduce the drift space needed for the insertion device (detector ...)

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

parameters to be optimised & matched to the periodic solution: \(\alpha_x, \beta_x, D_x, D'_x\) \(\alpha_y, \beta_y, Q_x, Q_y\)

8 individually powered quad magnets are needed to match the insertion (... at least)
The LHC Insertions

Inner Triplet
- IP1
- TAS
- Q1 Q2 Q3
- D1 (1.38 T)

Separation/Recombination
- TAN
- D2 (3.8 T)
- Q4
- Q5
- Q6
- Q7

Matching Quadrupoles
- 4.5 K
- 1.9 K

ATLAS
- R1

Mini β optics
- βx, βy

Momentum offset
- 12.850 to 13.705
Bibliography:

1.) Edmund Wilson: *Introd. to Particle Accelerators*
Oxford Press, 2001

3.) Peter Schmüser: *Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01*

http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm

5.) Herni Bruck: *Accelerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)*

7.) Frank Hinterberger: *Physik der Teilchenbeschleuniger, Springer Verlag 1997*

8.) Mathew Sands: *The Physics of e+ e- Storage Rings, SLAC report 121, 1970*

9.) D. Edwards, M. Syphers: *An Introduction to the Physics of Particle Accelerators, SSC Lab 1990*