Injection and extraction

- Kickers and septa
- Injection methods
 - Single-turn hadron injection
 - Injection errors, filamentation and blow-up
 - Multi-turn hadron injection
 - Charge-exchange H- injection
 - Lepton injection
- Extraction methods
 - Single-turn (fast) extraction
 - Non-resonant multi-turn extraction
 - Resonant multi-turn (slow) extraction

Brennan Goddard (presented by Wolfgang Bartmann)
CERN
Injection, extraction and transfer

• An accelerator has limited dynamic range.
• Chain of stages needed to reach high energy
• Periodic re-filling of storage rings, like LHC

Beam transfer (into, out of, and between machines) is necessary.
Kicker magnet

Pulsed magnet with very fast rise time (100ns – few μs)

\[
B = \frac{\mu_0 I}{g}
\]
\[
L = \frac{\mu_0 w l}{g} \quad \text{(magnet length l)}
\]
\[
dI/dt = \frac{V}{L}
\]

Typically 3 kA in 1 μs rise time
Magnetic septum

Pulsed or DC magnet with thin (2-20mm) septum between zero field and high field region

\[
B = \frac{\mu_0 I}{g}
\]

Typically \(I \approx 5-25 \text{ kA} \)

\(B_0 \) is the magnetic field strength at the septum.
Electrostatic septum

DC electrostatic device with very thin (~0.1mm) septum between zero field and high field region

High voltage electrode

Hollow earth electrode

Thin wire or foil (~0.1 mm)

E = V / g
Typically V = 200 kV
E = 100 kV/cm

High Voltage Electrode

Septum wires

Hollow earth electrode
Normalised phase space

• Transform real transverse coordinates x, x' by

$$\begin{bmatrix} \bar{X} \\ \bar{X}' \end{bmatrix} = N \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \sqrt{\frac{1}{\beta_s}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_s & \beta_s \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$$

$$\bar{X} = \frac{1}{\sqrt{\beta_s}} \cdot x$$

$$\bar{X}' = \sqrt{\frac{1}{\beta_s}} \cdot \alpha_s x + \sqrt{\beta_s} x'$$
\[\varepsilon = \gamma \cdot x^2 + 2\alpha \cdot x \cdot x' + \beta \cdot x'^2 \]

\[\varepsilon = \overline{X}^2 + \overline{X'}^2 \]
• Septum deflects the beam onto the closed orbit at the centre of the kicker
• Kicker compensates for the remaining angle
• Septum and kicker either side of D quad to minimise kicker strength
Single-turn injection

Normalised phase space at centre of idealised septum

Large deflection by septum
Single-turn injection

$\pi/2$ phase advance to kicker location
Single-turn injection

Normalised phase space at centre of idealised kicker

Kicker deflection places beam on central orbit
For imperfect injection the beam oscillates around the central orbit. 1

kicker θ error
Injection oscillations

For imperfect injection the beam oscillates around the central orbit.
For imperfect injection the beam oscillates around the central orbit.
For imperfect injection the beam oscillates around the central orbit.
Injection oscillations

- Betatron oscillations with respect to the Closed Orbit

Transfer line to LHC (first turn)
Filamentation

- Non-linear effects (e.g. magnetic field multipoles) present which introduce amplitude dependent effects into particle motion.
- Over many turns, a phase-space oscillation is transformed into an emittance increase.
- So any residual transverse oscillation will lead to an emittance blow-up through filamentation
 - “Transverse damper” systems used to damp injection oscillations - bunch position measured by a pick-up, which is linked to a kicker
Filamentation
Damping of injection oscillations

- Residual transverse oscillations lead to an emittance blow-up through filamentation.
- “Transverse damper” systems used to damp injection oscillations - bunch position measured by a pick-up, which is linked to a kicker.
- Damper measures offset of bunch on one turn, then kicks the bunch on a subsequent turn to reduce the oscillation amplitude.
Optical Mismatch at Injection

- Can also have an emittance blow-up through optical mismatch
- Individual particles oscillate with conserved CS invariant:
 \[a_x = \gamma x^2 + 2\alpha xx' + \beta x'^2 \]
Optical Mismatch at Injection

- Filamentation fills larger ellipse with same shape as matched ellipse
Multi-turn injection

• For hadrons the beam density at injection can be limited either by space charge effects or by the injector capacity

• If we cannot increase charge density, we can sometimes fill the horizontal phase space to increase overall injected intensity.
 – Condition that the acceptance of receiving machine is larger than the delivered beam emittance
Multi-turn injection for hadrons

- No kicker
- Bump amplitude decreases and inject a new bunch at each turn
- Phase-space “painting”
Multi-turn injection for hadrons

Example: CERN PSB injection, fractional tune $Q_h = 0.25$

Beam rotates $\pi/2$ per turn in phase space

Turn 1

On each turn inject a new batch and reduce the bump amplitude
Multi-turn injection for hadrons
Multi-turn injection for hadrons

Turn 3

\[\begin{align*}
X' & \rightarrow \\
X & \rightarrow
\end{align*} \]
Multi-turn injection for hadrons

Turn 4

\[X \]
\[X' \]
Multi-turn injection for hadrons
Multi-turn injection for hadrons

Turn 6
Multi-turn injection for hadrons
Multi-turn injection for hadrons

Turn 8
Multi-turn injection for hadrons
Multi-turn injection for hadrons

Turn 10
Multi-turn injection for hadrons
Multi-turn injection for hadrons
Multi-turn injection for hadrons

Turn 13

$\bar{X}' \begin{array}{c} Y \end{array}$ X
Multi-turn injection for hadrons
In reality filamentation occurs to produce a quasi-uniform beam
For multturn injection over n turns, injected beam ellipse is deliberately mismatched to circulating beam ellipse to reduce losses.
Charge exchange H- injection

- Multiturn injection is essential to accumulate high intensity
- Disadvantages inherent in using an injection septum
 - Width of several mm reduces aperture
 - Beam losses from circulating beam hitting septum
 - Limits number of injected turns to 10-20
- Charge-exchange injection provides elegant alternative
 - Possible to fully “deploy” Liouville’s theorem, which says that emittance is conserved.…
 - Convert H- to p+ using a thin stripping foil, allowing injection into the same phase space area
Charge exchange H- injection

Start of injection process

H- beam

Stripping foil

Circulating p+

Displace orbit

Injection chicane dipoles
Charge exchange H- injection

End of injection process

- H- beam
- Stripping foil
- Circulating p+
- Injection chicane
- p+
Charge exchange H- injection

- Paint uniform transverse phase space density by modifying closed orbit bump and steering injected beam
- Foil thickness calculated to double-strip most ions (>99%)
 - 50 MeV - 50 µg.cm-2
 - 800 MeV - 200 µg.cm-2 (~1 µm of C!)
- Carbon foils generally used – very fragile
- Injection chicane reduced or switched off after injection, to avoid excessive foil heating and beam blow up
H- injection - painting

Note injection into same phase space area as circulating beam

~100 turns
Lepton injection

- Single-turn injection can be used as for hadrons; however, lepton motion is strongly damped (different with respect to proton or ion injection).
 - Synchrotron radiation
- Can use transverse or longitudinal damping:
 - Transverse - Betatron accumulation
 - Longitudinal - Synchrotron accumulation
Betatron lepton injection

- Beam is injected with an angle with respect to the closed orbit
- Injected beam performs *damped* betatron oscillations about the closed orbit
Injected bunch performs **damped** betatron oscillations

In LEP at 20 GeV, the damping time was about 6’000 turns (0.6 seconds)
• Beam injected parallel to circulating beam, onto dispersion orbit of a particle having the same momentum offset $\Delta p/p$.

• Injected beam makes damped *synchrotron oscillations* at Q_s but does not perform betatron oscillations.
Double batch injection possible.

Longitudinal damping time in LEP was ~ 3’000 turns (2 x faster than transverse)
Synchrotron lepton injection in LEP

Synchrotron lepton injection in LEP gave improved background for LEP experiments due to small orbit offsets in zero dispersion straight sections.
Injection - summary

• Several different techniques
 – Single-turn injection for hadrons
 • Boxcar stacking: transfer between machines in accelerator chain
 • Angle / position errors ⇒ injection oscillations
 • Optics errors ⇒ betatron mismatch oscillations
 • Oscillations ⇒ filamentation ⇒ emittance increase
 – Multi-turn injection for hadrons
 • Phase space painting to increase intensity
 • H- injection allows injection into same phase space area
 – Lepton injection: take advantage of damping
 • Less concerned about injection precision and matching
Extraction

• Different extraction techniques exist, depending on requirements
 – **Fast extraction**: \(\leq 1 \) turn
 – **Non-resonant multi-turn extraction**: few turns
 – **Resonant multi-turn extraction**: many thousands of turns
 – **Resonant low-loss multi-turn extraction**: few turns

• Usually higher energy than injection \(\Rightarrow \) stronger elements (\(\int B \cdot dl \))
 – At high energies many kicker and septum modules may be required
 – To reduce kicker and septum strength, beam can be moved near to septum by closed orbit bump
Fast single turn extraction

- Whole beam kicked into septum gap and extracted.

- Kicker deflects the entire beam into the septum in a single turn
- Septum deflects the beam entire into the transfer line
- Most efficient (lowest deflection angles required) for $\pi/2$ phase advance between kicker and septum
Fast single turn extraction

- For transfer of beams between accelerators in an injector chain.
- For secondary particle production (e.g. neutrinos)
- Septum deflection may be in the other plane to the kicker deflection.
- Losses from transverse scraping or from particles in extraction gap.

![Graph showing particles in SPS extraction kicker rise- and fall-time gaps.](graph.png)
Some filling schemes require a beam to be injected in several turns to a larger machine…

And very commonly Fixed Target physics experiments and medical accelerators often need a quasi-continuous flux of particles…

Multi-turn extraction…

– Non-Resonant multi-turn ejection (few turns) for filling e.g. PS to SPS at CERN for high intensity proton beams (>2.5 10^{13} protons)

– Resonant extraction (ms to hours) for experiments
Non-resonant multi-turn extraction

Beam bumped to septum; part of beam ‘shaved’ off each turn.

- Fast bumper deflects the whole beam onto the septum
- Beam extracted in a few turns, with the machine tune rotating the beam
- Intrinsically a high-loss process – thin septum essential
Non-resonant multi-turn extraction

- Example system: CERN PS to SPS Fixed-Target ‘continuous transfer’.
 - Accelerate beam in PS to 14 GeV/c
 - Empty PS machine (2.1 μs long) in 5 turns into SPS
 - Do it again
 - Fill SPS machine (23 μs long)
 - Quasi-continuous beam in SPS (2 x 1 μs gaps)
 - Total intensity per PS extraction ≈ 3 × 10^{13} p+
 - Total intensity in SPS ≈ 5 × 10^{13} p+
Non-resonant multi-turn extraction

CERN PS to SPS: 5-turn continuous transfer

$Q_h = 0.25$

Bump vs. turn
Non-resonant multi-turn extraction

CERN PS to SPS: 5-turn continuous transfer – 5th turn

\(Q_h = 0.25\)
Non-resonant multi-turn extraction

- CERN PS to SPS: 5-turn continuous transfer
 - Losses impose thin (ES) septum… second septum needed
 - Still about 15% of beam lost in PS-SPS CT
 - Difficult to get equal intensities per turn
 - Different trajectories for each turn
 - Different emittances for each turn
Resonant multi-turn extraction

Non-linear fields excite resonances which drive the beam slowly across the septum.

- Slow bumpers move the beam near the septum
- Tune adjusted close to \(n^{th} \) order betatron resonance
- Multipole magnets excited to define stable area in phase space, size depends on \(\Delta Q = Q - Q_r \)
Resonant multi-turn extraction

- 3rd order resonances
 - Sextupole fields distort the circular normalised phase space particle trajectories.
 - Stable area defined, delimited by unstable Fixed Points.

\[
R_{fp}^{1/2} \propto \Delta Q \cdot \frac{1}{k_2}
\]

- Sextupoles families arranged to produce suitable phase space orientation of the stable triangle at thin electrostatic septum
- Stable area can be reduced by increasing the sextupole strength, or (easier) by approaching machine tune Q_h to resonant 1/3 integer tune
- Reducing ΔQ with main machine quadrupoles can be augmented with a ‘servo’ quadrupole, which can modulate ΔQ in a servo loop, acting on a measurement of the spill intensity
Third-order resonant extraction

- Particles distributed on emittance contours
- ΔQ large – no phase space distortion
• Dedicated sextupole magnets produce a triangular stable area in phase space
• ΔQ decreasing – phase space distortion for largest amplitudes
Third-order resonant extraction
Third-order resonant extraction
Third-order resonant extraction
Third-order resonant extraction

- ΔQ small enough that largest amplitude particles are close to the separatrices
- Fixed points locations discernable at extremities of phase space triangle
• ΔQ now small enough that largest amplitude particles are unstable
• Unstable particles follow separatrix branches as they increase in amplitude
Third-order resonant extraction

- Stable phase area shrinks as ΔQ gets smaller
Third-order resonant extraction

- Separatrix position in phase space shifts as the stable area shrinks
Third-order resonant extraction

As the stable area shrinks, the beam intensity drops since particles are being continuously extracted.
Third-order resonant extraction
Third-order resonant extraction

\[\bar{X}' \]

\[\bar{X} \]

Septum wire
Third-order resonant extraction
Third-order resonant extraction

As ΔQ approaches zero, the particles with very small amplitude are extracted.
Third-order resonant extraction

Example – SPS slow extraction at 450 GeV/c.
~3 x 10^{13} p+ extracted in a 2-4 second long spill (~200,000 turns)

Intensity vs time:
~10^8 p+ extracted per turn
Second-order resonant extraction

- An extraction can also be made over a few hundred turns
- 2nd and 4th order resonances
 - Octupole fields distort the regular phase space particle trajectories.
 - Stable area defined, delimited by two unstable Fixed Points.
 - Beam tune brought across a 2nd order resonance (Q\rightarrow0.5)
 - Particle amplitudes quickly grow and beam is extracted in a few hundred turns.
Resonant extraction separatrices

• Amplitude growth for 2nd order resonance much faster than 3rd – shorter spill
• Used where intense pulses are required on target – e.g. neutrino production
Resonant low-loss multi-turn extraction

- Adiabatic capture of beam in stable “islands”
 - Use non-linear fields (sextupoles and octupoles) to create islands of stability in phase space
 - A slow (adiabatic) tune variation to cross a resonance and to drive particles into the islands (capture)
 - Variation of field strengths to separate the islands in phase space

- Several big advantages
 - Losses reduced virtually to zero (no particles at the septum)
 - Phase space matching improved with respect to existing non-resonant multi-turn extraction - all ‘beamlets’ have same emittance and optical parameters
Resonant low-loss multi-turn extraction

a. Unperturbed beam

b. Increasing non-linear fields

c. Beam captured in stable islands

d. Islands separated and beam bumped across septum – extracted in 5 turns

 Courtesy M. Giovannozzi
Several different techniques:

- Single-turn fast extraction:
 - for Boxcar stacking (transfer between machines in accelerator chain), beam abort

- Non-resonant multi-turn extraction
 - slice beam into equal parts for transfer between machine over a few turns.

- Resonant multi-turn extraction
 - create stable area in phase space \Rightarrow slowly drive particles into resonance \Rightarrow long spill over many thousand turns.

- Resonant low-loss multi-turn extraction
 - create stable islands in phase space: slice off over a few turns.