Special relativity — E. J. N. Wilson - CERN

¢ Moving and rest frames

¢ Michelson-Morley

¢ Clocks

¢ Lorentz transformation

¢ Time dilation

¢ Space-time four vector

¢ Transforming velocity

¢ Momentum — energy four vector
¢ Transforming acceleration

¢ Transforming force

¢ Synchrotron radiation

¢ Electromagnetic field transformation
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Observers in Laboratory and Moving Frames

¢ JOE is an observer in the “laboratory” frame and uses
unprimed coordinates to describe P

¢ MOKE is an observer in the “moving frame” and uses
primed coordinates to describe P

¢ The relative velocity MOE-JOE is the vector u
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Michelson Morley Experiment (1337/)
points to space contraction

¢ Suppose device is moving with velocity, u,
relative to the “ether” while light velocity

[ in ether is constant, c
| /,’\ ¢ Mirror E moves a distance ut in time t for
/ \ light to pass from B to E
\
FA ¢ t=L/(c-u) and L/(c+u) on return
L/ y b ¢ total time is
/ \
/ = 2 2
/ h 2Lc/(c”—u”)
% L—
e MY % 2 - & Forth and back to C covers a longer
Ol K ) distance (hypotenuse of a triangle) and
A = x Ef sl £l . .
| AL | total time is:
vy .
(¢ |
Wav N . 2 2
o phase i {0 e 2Lc/~Nc —u
\} ‘,\’—f—ﬁ\x
D' F .

They changed u and found no
interference?

¢ But suppose BE shrinks as

L, =L, /¢’ —u’
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The light clock explains time dilation

Mirr ¢ This clock ticks every time a photon travels back and
i forth falling on a photocell which sends another
l; | photon off. The interval is 2L/c
" |
Photoceli\ J

(a)

Pulse
reflected

¢ When the clock moves in a spaceship it ticks at the
same rate to MOE but in the laboratory the light must
clearly travel a longer distance and the interval
between ticks will be :

2Lc/~Nc” —u’ =2(L/c)/¢l—(u/c)2

¢ Clearly this is a slower tick rate by the factor.

1/\1=(u/c)* =1/ 1-p* =¥
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Transformations
(between observers with relative velocity u)

Galileo (1630) 1;401’611;1 (1?00) -
(Newton is unchanged but (Maxwell equations unchanged)
Maxwell equations change) o = X —ut
— = ]
x'=x—ut Maxwell (1880) JI=u? v \
OB Foretaste
- VxE=-2. Y=y,
y =Y Py
vxH=J+2 z' =1z,
ot
Z’ = Z, V . D — p’ :
V-B=0 o t—ux/c
=t \/ 1—u’ / v

.orentz found this, feeling in the dark for a transformation which did not spoil Maxw
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Lorentz transformation (slightly different notation)

_ Y-V vmy. oz =z Ct—wx,/c’
\/1—v2/02, oo \/1 e

MOE lays down a ruler length: l

JOE in the lab, compares the position of
the ends at the same time ( t=0 in both
systems) with marks on his bench

¥ (perhaps by a photo) and concludes

| MOE'’s ruler is shorter:

lIIIIIIIIIIII

o e L= 1-v/c* =1,y
JOE’s view
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Time dilation

X, — Vi,

\/1\/

Yo = Vs

Zy =2y,

Ct—wx,/c’

\/1 vz/c

& The three clocks are identical and start at time zero.

¢ When MOKE’s reaches JOE’s second clock MOE’s has not
advanced as much as JOE’s

¢ If we arbitrarily choose

__ —= Y2

JOE

then

‘= Vi,
1 \/l—vz/c2

— | Y2

t—vxl/c

\/lv

Gives:

\/1—\/2/02

= Vi,
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Explains long life of cosmic muons




Four vector of space-time

Y2 = CO? O+ y,sinb, * Et?ti:tit;;all:)sif (:lrxlflézcl:(i)(:'noifsci:)nstant
Y, =—X,;sin0+ y, cos6 length: W
¢ The Lorentz transformation:
—Vt, B B Ct—wx, /¢’
\/1 VZ/C Vo=V 2= 2, \/1 e

-vector: (x,y,z,—ct)

gth” is an —
Jx —I—y/—l—z —C'l

Rotates the

So that its “I
invariant

Quantities that are invariant under Lorentz

transformation are at the heart of physics
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Lorentz matrix

1 0 0
y 0 10 g y p=vic
21 70 01 0]z Y= 1
—t), \p 00 1h-ct) 1-p

1 0 0 B x

0 10 0 System 2 moves in the x direction
| 1o o1 o] :z| withvelocity v with respect to
—ct)y \=F 0 0 1A-=ct;  the stationary system 1
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Transforming a velocity

The relative velocity is now written U

N dx, dx dt,
dt, dt, dt,
dx 1 d d
1 __ — —
= > 5 (xz_Utz)—y (x2+0t2)—7("2x+0)
\/ l—v / C dt 2 dt 2
Using two partial differentials we obtain for : moving frame’s veloci

-

d
d—tt—YEf ~(0/e? o J=yli-(v/e® If v,=cP thenv, =(

Finally : v, 40 c(v,. —cp) If u=c thenv, =c

le — 2 14 —
a (VIX U/C ) " “” leB for all \k
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A small step to redefine momen

myv . myy

P s wiey  J1-p?

and B=v/c <~

E=vE,=myc*y=T+E,~— |

where the rest energy is E, = m,c’

T 1s the kinetic energyand y=FE/E,

tum and energy

Now the moving frame is a

where m, 1s the mass at rest W@city is

and whose rest energy is

S

E*—(pc)’ = (m002 )2 which is invariant

‘Y:E/EO, ﬁ:pC/E, B’Y:pc/EO
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Transformation of a momentum

(' E Y\ (v =By 0 0)
-pe| =P v 00
- Dp,C 0 0 1 O

\—p.c), UO 0 0 1)

¢ With the invariant rest energy

2

E*~(pe) =(mc’)
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-p,C
" P/,
p=vl/c
1

ey

System 2 moves in the x direction
with velocity v with respect to
the stationary system 1




Newton & Einstein

E

‘,OC

2

'5.'=EIED—|-

Almost all modern accelerators accelerate -
particles to speeds very close to that of
light.

In the classical Newton regime the
velocity of the particle increases with the
square root of the kinetic energy. T

As v approaches c it is as if the velocity
of the particle "saturates" i

One can pour more and more energy into
the particle, giving it a shorter De Broglie
wavelength so that it probes deeper into
the sub-atomic world

Velocity increases very slowly and
asymptotically to that of light

&
E
iy
5
=
L
z

é“:

vl ) o1k

Relativity - E. Wilson - 7/11/2003 - Slide 13



Synchrotron radiation

Acceleration
Electron Orbit
Acceleration
( 4 —> .
| In moving frame:
| 2 > —
_ 2 _
E=my",p. =0
Casel: ¥ <<t resits Use matrix to transform to

lab frame:

p. = Bym c’, p, 1s unchang
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Transforming acceleration

We can differentiate to find the acceleration

_dv,, dv_dt,
Toodt,  dt, dt,

a,

Again after using two partial differentials we obtain for :

a, If onlyaq,, #0 and relative velocity v=v,,
X

a, = - . .

2x B =1 h d hrotron ligl
2 a > a;, nNence rapid risc 1 syncnrotro

va [1 —v, V/c 22y P Y 8

B 1 VlyU
aZZ _ 2 2 ) alz + 2 alx
Y [l_leU/C ]2 \ € Y

1 { N V;,L }
a, = a a
2y YRy 2 1x
yz[l—leo/c ] ¢ —V,L
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Transforming a force

We express the force as three components (X, Y, Z)

X, =X, - 2 —UVIXU (Vlle +Vlzzl)
Y
Y — 1
2 V[l_leu/cz]z
VA 2

- 'Y[l_leu/cz]z
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Why is synchrotron radiation so y dependent?

¢ Synchrotron radiation is simply dipole radiation from a moving charge
like an electron circulating in a magnetic field. Larmor solved this
problem and it is easy to calculate that the power radiated is :

1 82 5 Here we see the acceleration of the
P = ( ZA)/ charge which is in the transverse
6 72'50 C3 direction L
To be invariant this physical law must be modified
P
1 e’
.\2 4 This term is because the
P = 3 (Z ) /4 — invariant transverse 5 2
672'5 0 C accelerationis _— 7/
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Transforming Electric and Magnetic Fields

[ Elx \
E
Elz
cB

1x

cB

ly

ly

KCB Iz /
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Special relativity Summary

¢ Moving and rest frames

¢ Michelson-Morley

¢ Clocks

¢ Lorentz transformation

¢ Time dilation

¢ Space-time four vector

¢ Transforming velocity

¢ Momentum — energy four vector
¢ Transforming acceleration

¢ Transforming force

¢ Synchrotron radiation

¢ Electromagnetic field transformation
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