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Summary:
• How to build a good x-ray source using 

relativity
• Recent progress -- ultrahigh brightness and 

how to use it:
– Ultrahigh resolution spectroscopy
– From spectroscopy to spectromicroscopy

• Coherent x-rays: The new radiology
• From synchrotrons to FEL's and their use:

– Microscopy beyond λ/2
• The future: SASE X-ray FEL's
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From ancient fires to synchrotrons 
and FEL’s, the same problems:

A fire is not very effective in 
"illuminating" a specific target: its 
emitted power is spread in all directions

A torchlight is much more effective: it is a small-
size source with emission concentrated within a 
narrow angular spread -- it is a "bright" source

Likewise, we would like to use “bright” sources 
for x-rays (and ultraviolet light)
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Why x-rays and ultraviolet?
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The “brightness” of a light source:

Flux, F

F
S x Ω

Brightness = constant x _________

Angular 
divergence, Ω

Source 
area, S
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Objective: building a very bright x-ray source.
Solution: relativity!!

Undulator Emitted x-rays

• The undulator (periodic magnet array) period determines the 
emitted wavelength. This period is shortened by the 
relativistic “Lorentz contraction” giving x-ray wavelengths

• The emitted x-rays are “projected ahead” by the motion of 
their sources (the electrons), and therefore collimated. 
Relativity enhances the effect

Ring under vacuum Circulating electrons 
(speed ≈c)
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Undulator
(periodic B-field, 

period L ≈ 
centimeters

Objective: building a very bright x-ray source
Details of the solution:

electron
Speed ≈ c

In the electron reference frame:
• Periodic B-field → periodic B & E-

fields moving at speed ≈c, similar to 
electromagnetic wave

• Lorentz contraction: L → L/γ
• Undulation of electron trajectory →

emission of waves with wavelength 
L/γ

In the laboratory frame:
• Doppler effect → wavelength further reduced by a factor 

of ≈2γ, changing from L/γ to L/2γ2

Overall: L → L/2γ2

Centimeters → 0.1-1,000 Å (x-rays, UV)
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emitted 
x-ray

θ

What causes the high brightness?

Electron 
reference 

frame

• Free electrons can emit more light than bound electrons ⇒ high flux
• The electron beam control is very sophisticated: small transverse 

beam cross section ⇒ small synchrotron source size
• Relativity collimates the emitted synchrotron radiation:

Lorentz transformation: γ-factor for x’ and t’ but not 
for y’ ⇒ tn(θ) reduced by a factor ≈1/γ

cx = dx/dt

cy = dy/dt

tn(θ) ≈ (cy/cx)

Laboratory 
frame

cx’ = dx’/dt’

cy’ = dy’/dt’
electron 
velocity
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Heat flux (watt/mm2)
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Swiss Light 
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The historical growth in brightness/brilliance
(units: photons/mm2/s/mrad2, 0.1% bandwidth)
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Synchrotron light polarization:

Electron in a storage ring:

TOP VIEW

TIL�TED VIEW

SIDE VIEW

Polarization:
Linear in the 

plane of the ring, 
elliptical out of 

the plane

Special (elliptical) wigglers and 
undulators can provide ellipticaly
polarized light with high intensity
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synchrotron
radiation

atom or
molecule

scattered 
photons, 
fluorescence

small-angle scattering

fluorescence spectroscopy

photoelectrons, 
Auger electrons photoelectron/Auger 

spectroscopy

transmitted 
photons

absorption spectroscopy

EXAFS

molecular
fragments

fragmentation spectroscopy

solid
scattered photons scattering

photoelectrons, 
Auger electrons
photoelectron/Auger 
spectroscopy

transmitted 
photons

absorption spectroscopy

EXAFS

fluorescence spectroscopyfluorescence

diffracted photons X-graphy

Atoms & 
molecules desorption spectroscopy

Synchrotron x-rays:
Many different interactions

↓
Many different applications
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Historical  Growth of Synchrotron Publications
Worldwide ISI data 1968 to 2002
Keyword: “synchrotron”
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Photoelectron spectroscopy: basic ideas
Formation of chemical bonds:

atom        solid

el
ec

tr
on

en
er

gy

Photon
(hν)

Photoelectron

Photoelectric effect:

el
ec

tr
on

en
er

gy

hν

The photon absorption 
increases the electron energy 

by hν before ejection of the 
electron from the solid
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Photoelectron spectroscopy of
high-temperature superconductivity:

el
ec

tr
on

s

energy

normal 
state

super-
conducting 
state

The limited energy 
resolution of 
conventional 
photoemission 
makes it impossible 
to observe the 
phenomenon

-0.2       -0.1           0
Energy (eV)

High-resolution 
spectra taken with 

ultrabright
synchrotron 

radiation
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Superconducting gap spectroscopy:
Gap anisotropy in BCSCO

Different gaps in 
different directions 

(Kelly, Onellion et al.

NO conventional s-waves:
• d-waves?
• Mixed d-symmetries or 

s+d?
• Other symmetries?
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Angle-resolved photoemission: simple picture

In a Fermi-liquid metal:
Photoemission spectra

(quasi-particle) energy vs k curve

EF

Energy

k

In a “Peierls” insulator 
(or in an electron-
instability insulator in 
general)
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High-resolution angle-resolved 
photoemission investigation of the

quasiparticle scattering processes in a 
model Fermi liquid: 1T-TiTe2

L. Perfetti, C. Rojas, A. Reginelli, L. Gavioli, H. 
Berger, G. Margaritondo, M. Grioni, R. Gaál, L. 

Forró, and F. Rullier Albenque
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Breakdown of the “Fermi liquid”:

But this is not always true: 
when observed with high-
resolution photoemission, 

excitations in one-
dimensional solids 

sometimes behave as 
separated electron-

“charge” quasiparticles
(holons) and “spin” 

quasiparticles (spinons) 

The elementary excitation in a Fermi liquid 
is a “hole” (empty electron state), a 
quasiparticle with charge +e and spin 1/2  

Holon

Spinon
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Fermi Edge in 
Fermi-liquid 

Metals

Non-Fermi-liquid 
Metals: No Fermi 

Edge
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From spectroscopy to 
spectromicroscopy:

Spectroscopy (energy 
and momentum 

resolution)

Microscopy (spatial 
resolution)

Chemical information

Spectromicroscopy



CERN Accelerator School - Synchrotrons and FELs - Brunnen 2003

The ESCA Microscopy Beamline at ELETTRA
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Inhomogeneous chemical reactions at the “unreactive” (!) 
Gase-Ge interface (J. Almeida et al.)
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Photoelectron spectromicroscopy (on untreated specimens) 
beats optical microscopy + staining in revealing cell nuclei

(B. Gilbert , M. Neumann , S. Steen  , D. Gabel , R. Andres, P. Perfetti, G. Margaritondo and Gelsomina
De Stasio)

The distribution of nuclei in human glioblastoma tissue, revealed (left) by
staining for optical microscopy and (right) by a MEPHISTO phosphorus
map on ashed tissue (phosphorus is shown dark). The MEPHISTO section
on gold had no treatment other than ashing. The imaged areas are in adjacent
tissue sections, so the exact pattern of nuclei distributions is not identical.

20µm
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Photoelectron spectromicroscopy explores fine chemical 
details in boron uptake in cells, in preparation for neutron 

cancer therapy 
(B. Gilbert , Gelsomina De Stasio et al.)

100µm

Gadolinium may 
work better!
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Conventional radiology

Refractive-index radiology



CERN Accelerator School - Synchrotrons and FELs - Brunnen 2003

fluorescent 
screen

screen with 
pinhole

Coherence: “the property that enables a wave to 

produce visible diffraction and interference effects”

θ
source 

(∆λ)

ξ

Example:

The diffraction pattern may or may not be visible on the 
fluorescent screen depending on the source size ξ, on 
its angular divergence θ and on its wavelength 
bandwidth ∆λ
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Longitudinal (time) coherence:

source 
(∆λ)

• Condition to see the pattern: ∆λ/λ < 1
• Parameter characterizing the longitudinal coherence: 

“coherence length”: Lc = λ2/∆λ
• Condition of longitudinal coherence: Lc > λ
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Lateral (space) coherence — analyzed with a source 

formed by two point sources:

• Two point sources produce overlapping patterns: 
diffraction effects are no longer visible.

• However, if the two source are close to each other an overall 
diffraction pattern may still be visible: the condition is to 
have a large “coherent power” (2λ/ξθ)2
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Conditions for lateral (space) coherence:

ξ

• Condition to see the pattern: ξΩ < 2λ

Ω

• If the emission occur over θ, only a fraction (Ω/θ)2 < (2λ/ξθ)2

produces diffraction. This defines the (lateral) coherent 
power: (2λ/ξΩ)2

θ

• Full (lateral) coherence — diffraction limit: ξΩ = 2λ
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Coherence — summary:

• Large coherence length Lc = λ2/∆λ
• Large coherent power (2λ/ξθ)2

•Both difficult to achieve for small 
wavelengths (x-rays)

•The conditions for large coherent 
power are equivalent to the geometric
conditions for high brightness
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Conventional (Absorption) 
Radiology:

detector

Object

X-ray 
beam

X-ray 
source



CERN Accelerator School - Synchrotrons and FELs - Brunnen 2003

Some Problems in 
Conventional Radiology:

Low-intensity, 
divergent beam

Low absorption Limited 
contrast, 

may 
require a 
high x-

ray dose
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Light-matter Interactions:
Absorption -- described 
by the absorption 
coefficient α

Refraction (and 
diffraction/interference) --
described by the 
refractive index n

For over one century, radiology was based on 
absorption: why not on refraction /diffraction?
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“Refraction” x-ray imaging:

Edge between 
regions with 
different n-values

detector Detected
intensity

Idealized edge image

Real 
example 
(leaf)
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“Refraction” x-ray imaging --
potential advantages over 

absorption:

• Differences between object and 
vacuum: small in both cases, but larger 
for n than for α

• This advantages increases as the 
wavelength decreases

• Better edge visibility, better contrast, 
smaller dose
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Examples of “refraction” radiology:

We can show that one can 
build on bubbles …

… study a fossil embryo...

… or take x-rays 
images of a 0.5 mm 

live microfish
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QuickTime™ et un décompresseur
GIF sont requis pour visualiser

cette image.

Building on bubbles:
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“Refraction” radiology -- the problems

Conventional 
x-ray source

Large size

Large angular 
divergence

Required, instead:

Solution:
synchrotron sources

SLS (Swiss 
Light Source)
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A bit more sophisticated description

Coherent* 
source

In the actual image, each 
edge is marked by fringes 
produced by Fresnel edge 

diffraction. The fringes 
enhance the edge and 

carry holographic 
information

Object

Detector

* Small &
collimated
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Our own results:
• Analytical modeling and validation 

tests. Main results: interplay 
between refraction and diffraction 
regimes; limited longitudinal 
coherence needed

• Numerical modeling
• First tests on live animals (PAL-

Korea and SRRC-Taiwan)
• Materials science experiments 

(Argonne, PAL, SRRC, Elettra): 
electrodeposition, fracture)

• First tests on anomalous-scattering
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Our own results:
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Our own results:
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Modeling: conditions for coherence-based radiology

Conditions to see the edge diffraction fringes:
ξ < 0.8 D √(λ/2L) ≈ 100 micron
∆λ/λ < √2

Equivalent condition for “refraction” radiology:
ξ/D < θ

opaque 
object

source 
(∆λ)

ξ

“Diffraction” 
radiology:

D                       L

no monochromator!!
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Modeling: interplay of “refraction” and “diffraction”

Refraction 
radiographs

Diffraction 
radiographs

Note: with bending-magnet 
emission, the effects are 
only in the vertical 
direction (no space 
coherence in the horizontal 
direction)
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Our own results -- materials science:

Imaging grain boundaries 
without any decoration
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QuickTime™ et un décompresseur
GIF sont requis pour visualiser

cette image.

Opening of a “stoma”

Radiography of individual cells

Leaf

Neurons
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Our own
results -

tomography:
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New types of sources:
• Ultrabright storage rings (SLS, new Grenoble 

project) approaching the diffraction limit
• Inverse-Compton-scattering table-top sources
• Infrared and VUV FEL’s
• Energy-recovery machines 
• Self-amplified spontaneous emission (SASE) X-ray 

free electron lasers
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Free-electron lasers:
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Free-electron laser surgery:

Wavelength selection → much 
less collateral damage:
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The scanning near-field optical
microscope (SNOM): like the stethoscope

Heart:
Frequency ≈ 30-100 Hz
Wavelength λ ≈ 102 m

Accuracy in localization ≈ 10 cm ≈ λ /1000

Small 
aperture

Small 
distance

Coated 
small-tip 

optics 
fiber

Microscopic 
light-
emitting 
object

SNOM resolution: well 
below the “diffraction 
limit” of standard 
microscopy (≈ λ)
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∆y ∆ky > 2π → ∆y > 2π/∆ky
∆ky < ky = √(k2 - kx

2)
kx real → ∆ky < k = 2π/λ

∆y > λ
(diffraction limit)

SNOM: why does it work? Consider two slits:

x

y

Wave, k = 
2π/λ

However, for kx imaginary 
the condition does not apply 
and

∆y < λ
becomes possible

After a narrow optics fiber 
tip, there is an “evanescent 
wave” with imaginary in the 

x-direction kx
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20x20 µm2 SNOM image of growth medium 
(A. Cricenti et al.):

SNOM     topography

S-O & N-O
vibrations

(λ = 6.95 µm)

λ = 6.6 µm

Intensity line scan

Resolution
≈ 0.15 µm << λ
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Electron,
energy = γ

Infrared
photon  hν

γ’ ≈ γ
X-ray
photon  hν’

Doppler effect: in the electron beam frame, the photon energy ≈ 2γ hν.
This is also the energy of the backscattered photon in the electron-
beam frame.

In the laboratory frame, there is again a Doppler shift with a 2γ factor, 
thus:

hν' ≈ 4γ2 hν
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Energy-recovery LINAC sources

The brightness depends on 
the geometry of the source, 
i.e., of the electron beam

In a storage ring, the 
electrons continuously emit 

photons. This “warms up” the 
electron beam and negatively 

affects its geometry 

Controlling the electron beam 
geometry is much easier in a 
linear accelerator (LINAC). 
Thus, LINAC sources can 
reach higher brightness levels 
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However, contrary to the 
electrons in a storage ring, 
the electrons in a LINAC 
produce photons only once: 
the power cost is too high  

Energy-recovery LINAC sources

Solution: recovering energy

Accelerating 
section  

Energy-
recovery 
section  
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Wiggler  

Example: Kulipanov’s “super-microtron” ER LINAC
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THE “4 GLS” CONCEPT AT DARESBURY
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Self-amplified spontaneous emission x-ray 
free-electron lasers (SASE X-FEL’s)

Normal (visible, IR, UV) lasers:
optical amplification in amplifying medium
plus optical cavity (two mirrors)

X-ray lasers: no mirrors → no optical cavity →
need for one-pass high optical amplification

SASE strategy:

LINAC (linear accelerator)

Wiggler
electron bunch

The microbunching increases the electron density 
and the amplification and creates very short pulses
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Seeding-Amplifier X-FELs

First Wiggler
(SASE Emitter)

Electron Beam

Second Wiggler 
(Amplifier)

Monochromator

Electron Beam
Bypass

Electron 
Dump

Photon Beam
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SASE x-ray FEL’s

The FEL at 
the Tesla Test 

Facility

Extracted spectrum
SASE at λ = 108.5 nm

Image of CCD at 
focal plane of a 
1 m 
monochromator

Dispersion

Vertical
Position
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First Real Experiments at the TESLA X-FEL’s
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SASE X-FEL’s: 
superbright (orders of 
magnitude more than 
present sources) 
femtosecond pulses:

• New chemistry?
• One-shot crystallography 

(no crystals)?
• Total coherence
• Unprecedented 

electromagnetic energy 
density

• Is this “vacuum”?
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New physics?
Consider the parameters of the Swiss Light Source:

Circumference: 288 m Single Bunch Current: 10-4 A
Bunch Length: 4 � 10-3 m Electron speed ≈ c ≈ 3 � 108 m/s

The charge per bunch is 10-4 � 288/(3 � 108) ≈ 10-8 coulomb, 
corresponding to 6 � 1010 electrons.The horizontal bunch size is < 2 � 
10-5. Assuming 0.1% coupling, the bunch volume is < 1.6 � 10-15 m3. 
Thus, the electron density exceeds 4 x 1019 cm-3.

What is this: a gas of independent electrons? Or a correlated multi-
particle system?

What kind of thermodynamics should we use? The covalent form of 
thermodynamics is still an open issue!

For example: T can be defined using the entropy law or the equipartition
principle. The two definitions are equivalent in classical physics, but in 
relativity they lead to different Lorentz transformations of T!
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1. The technology of storage rings and FEL's solved the 
ancient problem of brightness.

2. The brightness increase was so rapid that  applications are 
still trailing behind.

3. Nevertheless, many exciting results were obtained, for 
example in spectromicroscopy and high resolution 
spectroscopy.

4. The most important new achievements will  be linked to the 
interdisciplinary use of photon sources — exporting physics 
and chemistry techniques to medical research and the life 
sciences in general.

5. Coherence-based applications will play a special role.
6. New FEL's like the SASE machines are beyond imagination: 

towards one-shot crystallography?

Conclusions:
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