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Dimensional Metrology

And

Positioning Operations

(Alain LESTRADE, Synchrotron SOLEIL)
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Frame
 

of
 

the
 

lecture
•

 

Theoretical tools for designers in the field of the measure:
–

 

Magneticians who need Metrology: bench for magnetic measures, magnet (positioning)
–

 

Mechanical engineering

–

 

To take the opportunity to introduce the basis an extended approach of DM & Alignment
–

 

In addition of what already exists on the topic
–

 

To present a case study: from the rotating coil to the beam orbit definition
–

 

Examples & case study are oriented “Synchrotron facility”

MetrologyMechanics Magnetism
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Frame
 

of
 

the
 

lecture

•

 

Theoretical tools for designers in the field of the measure:
–

 

To reach the necessary accuracy
–

 

with a good reliability

–

 

Common forgetting about reliability:

•

 

Micrometers or nanometers from sensors are nothing without reliability, 
redundancy is necessary but sometimes difficult (costly).
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Introduction

•
 

Dimensional Metrology: measuring the “shape”
 

of an object:
–

 

Dimensions (length)
–

 

Relative coordinates of 2 points (W.R. to a referential)
–

 

Displacements
–

 

Shapes (roundness, straightness)
–

 

Angles

•
 

Positioning Operations: alignment of objects together:
–

 

Magnets of an accelerator
–

 

Any mechanical unit

Gear

 

measured

 

by CMM
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Introduction
•

 

Sensors & Instruments: deliver a measurement:
–

 

Distances

 

: Caliper, Electronic Distancementer

 

(total station, laser tracker), etc.
–

 

Angles

 

: Theodolite, inclinometer, autocollimator, etc.
–

 

Displacement: Interferometer → Distance & Angle measurements
–

 

(Magnetism

 

: Rotating coils)

•

 

Mechanics: delivers a “position”:
–

 

Links & contacts: 
•

 

Shaft-bore
•

 

Sphere-cone
•

 

Kinematic mount (line-dot-plane), etc.
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Introduction

•

 

Time dependence of electronics & mechanical units:
–

 

Any structure is subject to tiny shape modification, stress or 
displacement (ex: thermal dependence)

 

due to influence quantities

 and

 

varying

 

with

 

time
–

 

Metrology depends on time
•

 

Spatial layout (design):
–

 

spatial analysis of any measurement system
–

 

Metrology depends on space

Martin, ESRF
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Introduction

•

 

The four components of Design in Dimensional Metrology units:

Measure Time

SpaceMechanics

Means: Point of

 

view:

Sensors & instruments:
Random & Bias (offset) Er

σ

 

& B

Mechanical units:
Random & Bias (offset) Er

σ

 

& B

Angle-Length

Effective length

Metrology loop

Lever arms

Multi-Step Layout

Differential Meas.

σ

σ

B & σ

B

σ

Stability σ
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Introduction

•

 

The four components of Design in Dimensional Metrology units:

Measure Time

SpaceMechanics

Means: Point of

 

view:

Sensors & instruments:
Random & Bias (offset) Er

σ

 

& B
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Measurements

Conditioner Signal

 

processing Digital output

Signal Processing immaterial part

Physical

 

part

•

 

The sensor: We just consider it as an output value affected by a

 noise (σ) and a bias (or offset). The linearity error is supposed to 
be treated (calibration)

Measure Time

SpaceMechanics

Calibration
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Random errors of sensors (type A errors)

•

 

Normal distribution of random errors: standard deviation
•

 

σ is used as the definition of the accuracy (precision) of a measurement

•

 

Law of random errors combination (n independent random variables) : 

•

 

It leads to an error budget
•

 

Not exhaustive but the main statistical terms (Ki²

 

test, LLSC ,etc…)
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Measure Time

SpaceMechanics

±1σ
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Bias errors of sensors (type B errors)

•

 

the zero value of a sensor not known

 

/ mechanics

 

(offset)
•

 

Linearity

 

errors

 

of

 

sensors: → calibration

•

 

The bias errors do not depend on time and their magnitude 
can be important

Measure Time

SpaceMechanics

EDM (Leica)
Mechanical

 
reference±1σ

Bias
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Errors depending on the external sources

•

 

Also called “influence quantities”
–

 

Vibrations
–

 

Slow drifts of mechanical units
–

 

Or of the ground

•

 

The main influence quantity is the thermal parameter:
–

 

Electronic components
–

 

Mechanical unit

Measure Time

SpaceMechanics
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Thermal dependence

Nivel20: temperature dependance
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Transitory phases

•

 

2 inclinometers on a marble
•

 

Difference of readings versus temperature

Measure Time

SpaceMechanics

Marble

Thermal cover

Leica

 

Nivel20
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Introduction

•

 

The four components of Design in Dimensional Metrology units:

Measure Time

SpaceMechanics

Means: Point of

 

view:

Sensors & instruments:
Random & Bias (offset) Er

σ

 

& B

Mechanical units:
Random & Bias (offset) Er

σ

 

& B



CAS 2009, Bruges, 15-26 June 2009: Metrology 15

Mechanics: positioning & measurements

•

 

Mechanics is a full component of the DM as a positioning system:
–

 

As centring systems:

•

 

Mechanics can deliver a dimensional quantity: gage block “Johnson”

Measure Time

SpaceMechanics

Target / Sphere

Sphere

 

/ Cone
Cone

 

/ pins

pins / magnetic

 

axis



CAS 2009, Bruges, 15-26 June 2009: Metrology 16

Random errors in Mechanics

•

 

Accuracy of machining is equivalent to random errors in the field of 
measurements

•

 

Clearance σ=10µm

 

(do not confuse with the tolerance)
•

 

σα

 

= σ/l
•

 

the X uncertainty at the point A is:  σX

 

= L.σα
•

 

The H accuracy depends on the rotation one

H

L

H’

Dependence

 

from

 

lever armClearance of

 

a unit shaft-bore

α

L

l

A

X

Measure Time

SpaceMechanics
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Offsets in Mechanics

•

 

Mechanical unit measured after having being machined; the difference with 
respect to the nominal dimension is called “offset”, and is similar to a bias 
error.

tolerance

 

stack-up

Error

 

budget

Measure Time

SpaceMechanics

∑
=

=
n

i
itot

1

2σσ

hσ
 

=offset

With

 

σ < σtot

Direct measurement

Fiducialization shunt of the assembly



CAS 2009, Bruges, 15-26 June 2009: Metrology 18

Analogy between Measure and Mechanics

•

 

1) The least squares principle (          minimum), in the field

 

of measures 
corresponds to a minimum of energy of a mechanical system at equilibrium.

•

 

2) Strengthening a geodetic network with additional measurements:

∑ 2
iυ

Sensitive to errors The network is more rigid

Measure Time

SpaceMechanics
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Introduction

•

 

The four components of Design in Dimensional Metrology units:

Measure Time

SpaceMechanics

Means: Point of

 

view:

Sensors & instruments:
Random & Bias (offset) Er

σ

 

& B

Mechanical units:
Random & Bias (offset) Er

σ

 

& B

Stability σ
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Stability Time Constant

•

 

The stability of the set “Instrument-Object”

 

should be better than the 
instrument precision

•

 

STC is the acceptable duration δt

 

during which we do not want less than a 
parasitic displacement quantity δd

 

:

•

 

STC = (δd, δt)

•

 

whatever the origin of the disturbance of the system: mechanical, electronic, etc.
•

 

It’s common to consider δd

 

as a random error

t (s)
Meas. Duration

 

δt

Meas. Accuracy

 

δm

STC

Parasitic

 

slow drift

Max. displ. δd

d (µm)

Measure Time

SpaceMechanics
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Stability Time Constant

•

 

Stability analysis is mandatory to fit to the required accuracy
•

 

For both, instrument

 

and object

 

to be measured

Measure Time

SpaceMechanics

(Synchrotron Soleil)
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Stability Time Constant

•

 

differential DOF * has to be considered: Rz

* DOF: Degrees

 

OF Freedom

Measure Time

SpaceMechanics

(Synchrotron Soleil)
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Stability Time Constant

•

 

Theodolite
–

 

3.10-4deg

 

accuracy
–

 

δt=30mn

 

measurement duration

≈

 

0.2μm

STCθZ

 

= (3.10-4deg; 30mn)

Z

ø70mm

Measure Time

SpaceMechanics

Leica

 

TDA5005, TM5100A
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Stability Time Constant

•

 

One solution is: re-measuring periodically the angle 
between the 2 mirrors STCθZ = (3.10-4deg; 2mn)

* DOF: Degrees

 

OF Freedom

Measure Time

SpaceMechanics

(Synchrotron Soleil)
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Introduction

•

 

The four components of Design in Dimensional Metrology units:

Measure Time

SpaceMechanics

Means: Point of

 

view:

Sensors & instruments:
Random & Bias (offset) Er

σ

 

& B

Mechanical units:
Random & Bias (offset) Er

σ

 

& B

Stability 

Angle-Length

Effective length

Metrology loop

Lever arms

Multi-Step Layout

Differential Meas.

σ

σ

B & σ

B

σ
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Spatial aspect of
 

DM: Affine Space

•

 

The physical space is mathematically modelled by an Affine Space

 

with 3 
dimensions:

–

 

The Length: “quantity with

 

a dimension and with a unit”, the meter
•

 

The angles are define by a ratio of two lengths:
–

 

The Angle, “quantity without

 

dimension and with a unit”, the radian

•

 

3 quantities are enough to define a triangle
•

 

Case of 3 angles known: we can only define its shape and not its

 

dimension

Measure Time

SpaceMechanics
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Spatial aspect of
 

DM: Affine Space

•

 

The small angles are often assimilated to a length: 
–

 

duality “angle-length”

•

 

Alignment on linear structure: Angle or length approach

L

dL#D.αα

D

Measure Time

SpaceMechanics

Theodolite

Laser-tracker
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The Angles: Affine & Vector Spaces

•

 

Affine Space:
–

 

Theodolite

–

 

Vector Space:
–

 

Autocollimator (theodolite) on a plane mirror
–

 

Inclinometre

A

B

α

y

x

C

y

x

Measure Time

SpaceMechanics
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Stability Time Constant & Effective length

•

 

Inclinometer: Instrument for small angle measurement around 
the horizontal (tiny slopes); Accuracy ≈

 

few μrad
•

 

The effective length (EL)

 

is the one of the detection part

Measure Time

SpaceMechanics

Effective Length

Extended EL ≈

 

10mm

Diode

4-quad 
cell
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Stability Time Constant & Effective Length

Structure to be

 
monitorized

Capacitive inclinometers: 

EL ≈

 

less

 

than

 

1mm

•

 

Structure to be motorized with the μrad

 

level for a long time (∞)
•

 

Any sub-part of the inclinometer should match to STC = (μrad, ∞)
•

 

Especially the detection part which shows the Effective Length (EL)

EL

EL

 

= 10mm => 10nm for 1 μrad
(in addition to electronic noise→ STCelec)

Measure Time

SpaceMechanics
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Stability Time Constant & Effective Length

•

 

Hydrostatic

 

Leveling

 

System

 

(HLS): 10nm, 10m => 1nrad

L1

L'
1

L2

L'
2

dZ= L'
1

 

- L'
2

dZ= L1- L2

 

= 0

EL=10m

Measure Time

SpaceMechanics

(Fogale

 

Nanotech)
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Effective Length

•

 

Machining

 

Dipole

 

laminations:
–

 

Shape or size tolerance is typically ±0.02mm
–

 

A usual confusion is to believe that the accuracy of the mechanical tilt (rotation around 
the beam) of the magnet is 0.02/Y=0.025mrad

 

, where Y=786mm, the width of yokes
–

 

The Effective Length

 

for the electron beam is actually the width of the pole p=128.6mm

 
→ 0.02/p=0.156mrad

–

 

The drawings have to be checked (tolerance stack_up)

Measure Time

SpaceMechanics

EL ≈

 

128.6

786
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•

 

Any system dedicated to positioning or requiring a positioning 
operation, consists of a succession of mechanical parts and/or of 
sensors 

•

 

It is the support of the positioning information transmission (Lahousse)

•

 

Ex: Coordinate Measuring Machine (CMM) 

•

 

Serial layout sensitive to errors (instrumental & instabilities)

 

due to a 
cumulative effect

Metrology loop
Measure Time

SpaceMechanics

(Hennebelle, ENSAM)

Sensor

Object

Metrology loop
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Metrology loop

•

 

Parallel

 

layout: robust

 

to errors, average

 

influence

Metrology loop

Measure Time

SpaceMechanics

(Lahousse, ENSAM)
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Metrology loop

•

 

Translation stage with coaxial micrometer:
–

 

Micrometer (screw) with backlash
–

 

The backlash is «

 

seen

 

»

 

by the measure
–

 

Not transmitted to the displacement

•

 

Measuring & mechanical loops are not independent

Direction of

 

displacement

Screw with backlash 
for displacement

Sensors

 

for measurement

Measure Time

SpaceMechanics
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•

 

Decoupling the actuator & measuring loops is mandatory for 
high accuracy units

•

 

Ex: Coordinate Measuring Machine (CMM):

Metrology loop
Measure Time

SpaceMechanics

(Hennebelle, ENSAM)

Sensor

Object

kinematic loop Measuring loop 
(symbolic)
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Metrology loop

•

 

Optical

 

measurements:

•

 

Interferometry

 

is affected by errors due to refractive index of the air 
on its path: Vacuum condition required for high accuracy or

•

 

“cale à gradins” for CMM

Support

Instrument

Air

Floor

Measure Time

SpaceMechanics
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Metrology loop

•

 

Bench

 

for Magnetic

 

Measurements:
–

 

Magnetic

 

parameters
–

 

Detection

 

of

 

zero

coil

girder

magnet

Measure Time

SpaceMechanics
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Introduction

•

 

The four components of Design in Dimensional Metrology units:

Measure Time

SpaceMechanics

Means: Point of

 

view:

Sensors & instruments:
Random & Bias (offset) Er

σ

 

& B

Mechanical units:
Random & Bias (offset) Er

σ

 

& B

Stability 

Angle-Length

Effective length

Metrology loop

Lever arms

Multi-Step Layout

Differential Meas.

σ

σ

B & σ

B

σ



CAS 2009, Bruges, 15-26 June 2009: Metrology 40

Graduated

 

staff for 
optical

 

leveling

d: Abbe lengthθ
d

e ≈ d.sinθ

Abbe error & lever arms

•

 

“Carrying out a good measure needs the measurement standard 
being placed in the same line as the dimension to be checked”

Optical

 

ruler: h≠0

Interferometer: h=0

θ

h

Measure Time

SpaceMechanics
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Abbe error & lever arms

d
le
2

2

cos ≈

d

l

e

l

d

•

 

Cosine

 

error:

•

 

l=1mm, d=100mm => e=5µm

Measure Time

SpaceMechanics
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Abbe error & lever arms

•

 

Qpole Fiducialization lever arms:

•

 

The complete description of lever arms stays the matrix of rotation: 
2D or 3D

d

h

X

Z

Measure Time

SpaceMechanics
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Multi-Step Layout

•

 

Reversal method

 

for centring

 

systems:

–

 

The arrow represents the orientation of the Object or of the Measurement

1st

 

reversal

2nd

 

reversal

A
a

b
B

Spacer

Triback

2
21 lll +

=

Measure Time

SpaceMechanics
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Multi-Step Layout

•

 

Autocollimation

 

on mirror:
–

 

Measurement:

–

 

Mirror

 

error:

2
21 llm +

=

Mirror non parallel2
21 lle −

=

Measure Time

SpaceMechanics

Measurement Object
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Multi-Step Layout

•

 

Inclinometer:
–

 

Measurement:

–

 

Inclinometer

 

error:

2
21 llm −

=

2
21 lle +

=

Measure Time

SpaceMechanics

Measurement

Object
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Multi-Step Layout

•

 

Multi-reversal method: roundness

 

error

 

of

 

a circular

 

piece:
•

 

The object is entirely measured n times by a Coordinate Measuring 
Machine (CMM) in the n

 

positions of the object after each rotation of 
360°/n

 

around its axis of symmetry. At each step of rotation of the object 
corresponds a full rotation of the CMM head for measuring the object.

1 step=360°/n of the Object

n Measures with CMM

per

n rotations of

360°/n of

 

the

 
object

1
2n

1 n2

rePositioning

Measure Time

SpaceMechanics
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Multi-Step Layout

•

 

Multi-Step Layout (MSL):
–

 

Each point of the Object “sees”

 

successively the defects of the 
Measurement system (+rePositioning)

–

 

Each position of measurement of the CMM “sees”

 

successively the 
defects of the Object (+rePositioning)

–

 

After calculation, Object, Measurement & rePositioning

 

errors are 
known

–

 

MSL (O,M,P): → Least Square Calculation: LLSC or NLLSC

–

 

Literature: 
•

 

Multi-probe error separation
•

 

Donaldson Reversal
•

 

Etc.

Measure Time

SpaceMechanics
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Multi-Step Layout

•

 

The general case:
–

 

Any kind of measurement can be involved: radial, tangential, etc.
–

 

Any kind of layout: circular, linear, etc.
–

 

Any kind of sensor, even a rotating coil for magnetic measurements or a 
theodolite

•

 

The theodolite case:
–

 

tangential as graduation errors of a theodolite circle
–

 

Iterating the measurements with a 360°/N step, eliminates the Fourier 
coefficients of the error function until order n-1

0

A

B
0

A

B 0

A 0
A

B B

Measure Time

SpaceMechanics
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Multi-Step Layout

•

 

N should be as great as possible: N→∞
–

 

Continuous measurements, dynamic encoder

•

 

Precise rotating tables with two encoders in juxtaposition to each other: 
0.01’’

Dynamic

 

angular

 

encoder of

 

Wild T2000

Measure Time

SpaceMechanics
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Multi-Step Layout

•

 

Geodetic network measurement:
–

 

Presents a Multi-Step layout: MSL(O,(M),(P))

Measure Time

SpaceMechanics

V02

V01
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Multi-Step Layout

•

 

The most important with the concept of MSL:
–

 

It is first of all, a qualitative approach, just to feel:
•

 

A wider approach of the “simple”

 

reversal method
•

 

to keep in mind that all the errors can be detected (O,M,P) in any kind of 
such situation

•

 

A capability to quantify the redundancy
•

 

A capability to quantify the number of unknowns of a set “Measurements-

 
Object”

Measure Time

SpaceMechanics
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Differential measurements

•

 

Very common in Metrology

•

 

Direct measurement: applying an extremity to a point and by reading 
the graduation in correspondence of the other

•

 

Differential method: the rule is shifted and two readings on the

 

rule are 
carried out in front of the two points. The length is the difference of the 
readings.

L1 L2

L

d = (L2

 

+e) –
 

(L1

 

+e) = L2

 

-L1

 

. 

d

Measure Time

SpaceMechanics
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Differential measurements

•

 

Wire Ecartometre: zero error, offset wire / fiducial:

Offset 
wire/fiducial

Detection

 
Carriage Stretched

 

wire

Distance to be

 

measured
Qpole

X

Y
X

Y

Measure Time

SpaceMechanics

1st

 

offset 2st

 

offset
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Differential measurements

•

 

Hydrostatic

 

Leveling

 

System

 

(HLS):

L1

L'
1

L2

L'
2

dZ= L'
1

 

- L'
2

dZ= L1- L2

 

= 0

Measure Time

SpaceMechanics

(Fogale

 

Nanotech)
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Differential measurements

HLS sensor

ø20mm
FSW

HLS sensor

ø20mm
FSW

FSW

1 2 N

Stainless

 

steel

 

calibration tool

Z1 Z2

h

•

 

HLS network: use of calibration tool to compare all the zero errors

111 eLh += 222 eLh += 21 eede −= deLLhhdZ +−=−= 2121

Measured

 

with

 

the

 

tool

Measured

 

with

 

HLS

Measure Time

SpaceMechanics
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Differential measurements

•

 

Superposition:
–

 

Two opposite areas of a graduated circle are superimposed
–

 

Even for a bubble
–

 

MSL situation

Measure Time

SpaceMechanics
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Differential measurements

•

 

Interferometry:
–

 

Physical system of differential measurement
–

 

At the level of the wave length, idea of superimposition
–

 

A wide range of applications: from astronomy to microscopy (VLTI, LiDar, etc.) 
–

 

In Dimensional Metrology: distance measurement by counting the fringes

Measure Time

SpaceMechanics

quasar
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•
 

Case study: The Qpole Alignment at SOLEIL
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Case study: The Qpole Alignment at SOLEIL

•

 

The beam orbit of Storage Ring is fully defined by the location of its 
quadrupole magnets:

–

 

The magnetic axis detection of the Qpoles
–

 

Fiducialization
–

 

Mechanical

 

alignment

 

on girder
–

 

Global alignment
–

 

Fine Alignment

Fiducials

1 X Shims

4 Z Shims

X

Z

S

e-
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Case study: The Qpole Alignment at SOLEIL

•

 

Rotating coil:

•

 

Hypothesis: the true axis of rotation is fixed and confused with

 
the geometrical axis of the coil. There is no radial runout

 

due to 
bearings

δ

r
0

X

Bz

dx=B1 /G

G=B2 /r0

2

10

2 B
Brdx ≈

2

10

2 B
Ardz −≈

Bi

 

, Ai, being the ith

 

real & imaginary harmonics of the flux

2

2)2tan(
B
A

−=θ

r0

r0

 

+dr0

X

Z

: dθ
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Case study: The Qpole Alignment at SOLEIL

•

 

The bench for magnetic measurements, calibration tool:
–

 

Link the coil axis to the bench to avoid STC = (10µm,∞)
•

 

A permanent Qpole tool with 8 faces
•

 

The tool is accurately measured
•

 

Multi-Step Layout

4
3

2

1

8

5
7

610

10
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Case study: The Qpole Alignment at SOLEIL

•

 

The magnetic axis detection:
–

 

Calibration magnetic tool
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9

17

12

11

•

 

Zero detection:
–

 

Each Qpole is measured by the bench: differential measurements
–

 

A set of shims are chosen for having the zero on the axis of the

 

coil
–

 

The shims are in contact with bench references: X pin & Z surface
–

 

STC = (10µm,∞) for the whole metrology loop
–

 

The weak point is the pin STC = (10µm,∞):

 

200 times in contact with 300-

 
500kg!

Case study: The Qpole Alignment at SOLEIL
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•

 

Zero detection:

Case study: The Qpole Alignment at SOLEIL
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•

 

Fiducialization:
–

 

When zero detection is OK: store the axis
–

 

Qpole Comparator: 4 electronic dial gages + 1 inclinometer
–

 

Contact on the coil support in rotation
–

 

Multi-Step Layout: reversal for X direction & tilt, not for Z!
–

 

STC = (10µm,30mn) in X thanks to the MSL, STC = (10µm,∞) in Z
–

 

A dedicated bench is necessary for Z
–

 

Dial gage zero: for practical reason on Z, not necessary on X (reversal)
–

 

The metrology loop does not include the bench!

Case study: The Qpole Alignment at SOLEIL
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•

 

Fiducialization :

Case study: The Qpole Alignment at SOLEIL
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Laser ecartometry of Qpoles

 

on a girder

 

:
–

 

Qpoles

 

are mechanically aligned by the contact of their shims with the

 
girder

 

references: X pin & Z surface
–

 

checking of the previous steps, results (X,Z) at SOLEIL : 15µm
–

 

MSL: reversal of the laser position WR to the girder
–

 

Beam stability is easy: STC = (5µm,2mn)

Case study: The Qpole Alignment at SOLEIL

Magnetic bench

Qpole Girder

Magnet comp.

Mounting

Qpoles / girder

STR500-Nivel20 survey
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Magnetic bench

Qpole Girder

Magnet comp.

Mounting

Qpoles / girder

STR500-Nivel20 survey

Correction Shims

Machined references

Checking loop
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Laser ecartometry of Qpoles

 

on a girder

 

:

Case study: The Qpole Alignment at SOLEIL
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Case study: The Qpole Alignment at SOLEIL

Mag. sensor

C magi

X pin

Magnet

 

Mi Magnet

 

Mj

33

Mag. Meas.

77shim

X pin

Mechanical

 

ref

 

(girder)
6*

14*
C magj

3Pos. yoke 3

88X-Z Coupl.

3Thermal 3

Mag. sensor
33

Bench

 

stability
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Alignment accuracy

0

50

100

150

200

250

0 5 10 15 20 25 30 35

STR500 (laser) Wire ecartometre Theodolite angles theodolite Dist

•

 

Planimetric Alignment with precise tacheometer

 

(orbit definition)

 

:
–

 

The general shape has to be controlled
–

 

Theodolite equipped with an Electronic DistanceMeter

 

(EDM)
–

 

Leica

 

TDA5005: to measured the network of points defined by all the 
Qpole fiducials: STCθz

 

(3.10-4deg, 10mn) difficult to reach
–

 

bundle adjustment based on least square calculation: similar to MSL
–

 

STC= (50µm,SA) for slab & mechanics:

 

SA is

 

the

 

period

 

between

 

to 
realignment

 

campaigns.

Case study: The Qpole Alignment at SOLEIL
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Case study: The Qpole Alignment at SOLEIL

•

 

Planimetric Alignment with precise tacheometer

 

(orbit definition)
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Case study: The Qpole Alignment at SOLEIL

•

 

Planimetric Alignment with wire ecartometry (orbit definition):
–

 

Final step for accurate alignment
–

 

A Kevlar wire is stretched to include the Qpoles

 

of 2 adjacent girders
–

 

Differential measurements to eliminate offsets
–

 

The final least square calculation includes also STR500 & TDA5005
–

 

STC= (10µm, 10mn): measurements
–

 

STC= (50µm,SA) for slab & mechanics:

 

SA is

 

the

 

period

 

between

 

to 
realignment

 

campaigns.
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Case study: The Qpole Alignment at SOLEIL

•

 

Planimetric Alignment with wire ecartometry (orbit definition):
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Case study: The Qpole Alignment at SOLEIL

•

 

Altimetric Alignment with HLS (orbit definition):
–

 

Free surface of water available all along the Storage Ring
–

 

Linking the Qpole Magnetic axis to that surface is very sensitive
–

 

Altimetric measurements from fiducials to HLS vessels
–

 

Linking all the zero sensors together: a stainless steel tool for calibration
–

 

STC = (5 µm, 1 year), differential measurement to eliminate the common 
part of sensor offsets

Optical measurements 

(STR500)

FSW

23
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Case study: The Qpole Alignment at SOLEIL

•

 

Altimetric Alignment with HLS (orbit definition):
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•

 

The limit of Differential Measurement:
–

 

Each Qpole is measured by the bench: differential measurements
•

 

It can be applied at the girder scale because any other component requires 
biggest accuracy of alignment → bench & Magnet comparator

•

 

Take care of components on straight sections (outside girders) with the 
magnet comparator: it has to be known in an “absolute way”.

Case study: The Qpole Alignment at SOLEIL
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Case study: The Qpole Alignment at SOLEIL

Magnetic bench

Qpole Girder

Magnet comp.

Mounting

Qpoles / girder

STR500-Nivel20 survey

Correction Shims

Machined references

Checking loop

Magnetic bench

Qpole Girder

Magnet comp.

Mounting

Qpoles / girder

STR500-Nivel20 survey

Correction Shims

Machined references
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Survey HLS (z,θs

 

) 

Survey (x,s) 
TDA5005, Ecartometer

Ring shape calculation (s,x,z)

Calculation of displ. sensors reading 

Displacement (z, θs

 

) then (x,s)
blocking

Reading of displ. sensors 

3D parametres

 

of girders (5 DOF)

Adjustment & 
control of : 
backlash, 

x-z coupling 
blocking effect

Calculations

Survey
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Case study: The Qpole Alignment at SOLEIL

•

 

The achieved results (must not be considered as the ultimate accuracy):
•

 

However, they are excellent according to the machine physics results (BPM 
readings):

•

 

=>

 

0.015mm on girder (1σ)

 0.050mm/girders (1σ)
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•

 

The limit of the error elimination:
–

 

The real physical phenomena are essentially complex & non-linear
–

 

True for the existing errors, especially for random errors

–

 

Try to limit the size of errors with the layout design because it allows:
•

 

Small displacement torsors

 

(commutativity

 

of 3D rotations)
•

 

Linearization of Least Square calculation (matrix)

Case study: The Qpole Alignment at SOLEIL
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•

 

The limit of the error elimination:

–

 

The real physical phenomena are essentially complex & non-linear
–

 

True for the existing errors, especially for random errors

–

 

Try to limit the size of errors with the layout design because it allows:
•

 

Small displacement torsors

 

(commutativity

 

of 3D rotations)
•

 

Linearization of Least Square calculation (matrix)

•

 

Repeating a set of measurement decreases random errors but does not 
affect bias errors

•

 

MSL will eliminate bias errors and decreases random errors

Case study: The Qpole Alignment at SOLEIL
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•
 

Thank you for your attention!
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