

THE CERN ACCELERATOR SCHOOL

D. Einfeld, CELLS

Introduction

D. Einfeld, CELLS

Introduction

D. Einfeld, CELLS

Layout of the Linac to Booster Transfer Line

D. Einfeld, CELLS

Final Lattice of Booster

D. Einfeld, CELLS

Layout of the Booster Storage Ring Transfer Line

D. Einfeld, CELLS

For the lattice design one has to make pretty soon the decision to use combined bending magnets or not. The usage of combined bending magnets has two advantages: 1.) reduction of the emittance by roughly 30 % because of Jx and 2.) building a more compact machine and therefore having more space for insertion devices (for a 3 GeV machine and a circumference of 300 m it is roughly 10%)

D. Einfeld, CELLS

Booster Design Criteria

- Full energy Booster
- Small emittance and beam cross section
- Top-up injection
- In the same tunnel as the S.Ring

✓ Share shielding

Share engineering services

X No independent access to both rings

But if top-up is running there is no access in any case

- Installation and commissioning require good organisation
- X What happens to stray fields?

Do some calculations to find acceptable distance between both rings.

Take maximum magnetic field into consideration

D. Einfeld, CELLS

Parameters of Booster Synchrotron

	+ d - <u>-</u> •[-		
Parameter	Unit		
Energy	GeV	3	
Emittance (natural)	nmrad	9.0	
Tunes (Q _x / Q _y)		12.42 / 7.38	
Natural Chromaticities (ξ _x / ξ _y)		-17.0 / -9.6	
Momentum Compaction Factor (α_1)		3.6×10 ⁻³	
Energy Spread (δΕ/Ε)		9.6×10 ⁻⁴	
Revolution frequency (f ₀)	MHz	1.202	
Damping Times (т _x / т _y / т _s)	ms	4.6 / 8.0 / 6.4	
Partition Numbers (J _x / J _y / J _s)		1.75 / 1.0 / 1.25	
Energy Loss per turn (U ₀)	keV	625	
Harmonic Number (h)		416	

Booster Lattice

Gradient within the bending magnet and

sextupole components within the bendings and quadrupoles

D. Einfeld, CELLS

Dynamic aperture: Only sextupoles, no magnets errors

mid of straight section

D. Einfeld, CELLS

Booster Lattice

ALBA

D. Einfeld, CELLS

1.) The deflection angle is:

$$\varphi = 10 \deg = 0.174533 rad$$

2.) The corresponding integrated flux density is:

$$B \bullet ds = -1.74652 \ _Tm$$

3.) The integrated gradient is:

$$\int G \bullet ds = 4.58 \, _T$$

4.) The integrated sextupole component is:

$$\int \frac{1}{2} \bullet B'' \bullet ds = 18 T / m$$

D. Einfeld, CELLS

6.) The good field region is:

D. Einfeld, CELLS

D. Einfeld, CELLS

D. Einfeld, CELLS

11.) Sizes of the conductor :

D. Einfeld, CELLS

12.) Shape of the magnet :

D. Einfeld, CELLS

Some people of this course know the specification of this bending Magnet very well.

For these peoples I changed the specifications to the following:

D. Einfeld, CELLS

1.) The deflection angle is:

$$\varphi = 11.25 \text{ deg.} = 0.19634954 \text{ rad}$$

2.) The corresponding integrated flux density is:

$$B \bullet ds = -1.96528 \ Tm$$

3.) The integrated gradient is:

$$\int G \bullet ds = 7.8279 \, _T$$

4.) The integrated sextupole component is:

$$\int \frac{1}{2} \bullet B'' \bullet ds = 38 T / m$$

D. Einfeld, CELLS

6.) The good field region is:

D. Einfeld, CELLS

$$f(rept.) = 3 Hz$$

D. Einfeld, CELLS

10.) Available space around the :

D. Einfeld, CELLS

11.) Sizes of the conductor :

D. Einfeld, CELLS

12.) Shape of the magnet :

D. Einfeld, CELLS

