

Advantages:

- ≻- Much smaller RF system (only beam power) → prefer low current/high duty
- Large aperture (lower beam loss in the SC section).
- Lower operating costs (electricity consumption).

Disadvantages:

➤ Need cryogenic system (in pulsed machines, size dominated by static loss → prefer low repetition frequency or CW to minimize filling time/beam time).

> Need cold/warm transitions to accommodate quadrupoles \rightarrow becomes more expensive at low energy (short focusing periods).

 \succ Individual gradients difficult to predict (large spread) \rightarrow need large safety margin in gradient at low energy.

Conclusions:

- 1. Superconductivity gives a large advantage in cost at high energy / high duty cycle.
- 2. At low energy / low duty cycle superconducting sections become expensive.

-

46

