Cyclotrons

for high intensity beams

Mike Seidel

Paul Scherrer Institut

Switzerland

Cyclotrons - Outline

- classical cyclotron
 - concept, classification of circular accelerators, relativistic relations, isochronicity, scalings
- separated sector cyclotrons
 - concept, focusing, space charge, injection/extraction, high intensity related aspects...
- cyclotron subsystems
 - RF, magnets, vacuum, diagnostics, electrostatic elements
- examples of existing high intensity cyclotrons
 - PSI-HIPA, RIKEN-SRC, TRIUMF
- discussion of pro's and con's

Classical Cyclotron

Lawre

Lawrence & Livingston, 27inch Zyklotron

powerful concept:

- → simplicity
- → CW operation
- multiple usage of accelerating voltage

two capacitive electrodes "Dees", two gaps per turn internal ion source homogenous B field **constant revolution time** (for low energy, $\gamma \sim 1$)

classification of circular accelerators

	bending radius	bending field vs. time	bending field vs. radius	RF frequency vs. time	operation mode (pulsed/CW)	comment
betatron	\rightarrow	~				induction
microtron	~	\rightarrow	\rightarrow	\rightarrow	_	varying <i>h</i>
classical cyclotron	_>	\rightarrow		\rightarrow	_	simple, but limited E _k
isochronous cyclotron	~	\rightarrow	~	\rightarrow		suited for high power!
synchro- cyclotron	_>	\rightarrow		~		higher E _k , but low P
FFAG	?	\rightarrow	~	~		strong focusing!
a.g. synchrotron	\rightarrow	~				high E _k

basics – cyclotron frequency and K value

• cyclotron frequency (homogeneous) B-field:

$$\omega_c = \frac{eB}{\gamma m_0}$$

• cyclotron K-value:

 \rightarrow K is the **kinetic energy reach** for protons **from bending strength** in non-relativistic approximation: $K = \frac{e^2}{2m_0} (B\rho)^2$

 \rightarrow K can be used to rescale the energy reach of protons to other charge-to-mass ratios:

$$\frac{E_k}{A} = K \left(\frac{Q}{A}\right)^2$$

→ K in [MeV] is often used for naming cyclotrons
 examples: K-130 cyclotron / Jyväskylä
 cyclone C230 / IBA

basics – isochronicity and scalings

• magnetic rigidity:

$$B \cdot R = \frac{p}{e} = \beta \gamma \frac{m_0 c}{e}$$

• orbit radius from isochronicity:

$$R = \frac{c}{\omega_c}\beta = R_{\infty}\beta$$
$$= \frac{c}{\omega_c}\sqrt{1 - \gamma^{-2}}$$

• since
$$R \propto \beta$$
; $B \cdot R \propto p \propto \beta \gamma$

 $\rightarrow B \propto \gamma$

• turn number:

$$n_t = \frac{m_0 c^2}{U_t} (\gamma - 1)$$
energy gain per turn

radius increment per turn decreases with increasing energy because the revolution time must stay constant

→ extraction becomes more and more difficult at higher energies

 R_{∞}

basics – focusing in the classical cyclotron

• field index:

 $\rightarrow k$

$$\zeta = \frac{R}{B_z} \frac{\partial B_z}{\partial R} (= \gamma^2 - 1)$$
 from isochronicity

betatron frequencies: •

$$\nu_{r} = \frac{\omega_{r}}{\omega_{c}} = \sqrt{1 + \zeta} \approx \gamma$$

$$\nu_{z} = \frac{\omega_{z}}{\omega_{c}} = \sqrt{-\zeta}$$

$$\nu_{r}^{2} + \nu_{z}^{2} = 1$$
to obtain vertical focusing: $\frac{\partial B_{z}}{\partial R} < 0$
however, isochronicity requires: $B_{z} \propto \gamma$, i.e. $\frac{\partial B_{z}}{\partial R} > 0$
 \rightarrow kinetic energy of classical cyclotron is limited
because of lack of vertical focusing

obtained from equations of motion and first order expansion of magnetic field B_,; note: curl**B**=0 provides relation between B₇ and B_r

 $BR = \frac{\beta \gamma}{e} \frac{m_0 c}{e}$

 $\tau = \frac{2\pi R}{\beta c}$

8

useful for calculations – differential relations

next: Sector Cyclotrons

the cyclotron concept suited for high intensity operation focusing, space charge, injection/extraction, high intensity related aspects...

today: Separated Sector Cyclotrons

- edge+sector focusing, i.e. spiral magnet boundaries, azimuthally varying B-field → next slide on focusing
- modular layout, larger cyclotrons possible, sector magnets, box resonators
- external injection required, i.e. preaccelerator
- radially wide vacuum chamber; inflatable seals etc.
- detailed field shaping for focusing and isochronisity required
- strength: CW acceleration; higher energy up to 1GeV, high extraction efficiency possible:

e.g. PSI: 99.98% = (1 - 2.10⁻⁴)

50MHz resonator

150MHz (3rd harm) resonator

focusing in sector cyclotrons

• hill / valley variation of magnetic field (Thomas focusing):

Flutter factor:

$$F = \frac{\overline{B_Z}^2 - \overline{B_Z}^2}{\overline{B_Z}^2}$$
vertical betatron f.:
 $v_Z^2 = -\frac{R}{B_Z} \frac{\partial B_Z}{\partial R} + F$

• with additional spiral angle of bending field:

radius increment per turn

- losses at extraction are typically limiting the intensity
- the electrode of an extraction element is placed between last two turns

 \rightarrow thus the radial stepwidth should be as large as possible

use orbit radius and turn number from previous slides:

$$\frac{dR}{dn_t} = \frac{\frac{dR}{d\gamma}\frac{d\gamma}{dn_t}}{\frac{R}{\gamma(\gamma^2 - 1)}\frac{U_t}{m_0c^2}} \quad \text{with isochronicity} \\ = \frac{\gamma}{\gamma^2 - 1}\frac{\frac{R}{\zeta + 1}\frac{U_t}{m_0c^2}}{\frac{V_t}{m_0c^2}} \quad \text{more general;} \\ \zeta \text{ - field index} \end{cases}$$

desirable: large radius

- desirable: large energy gain U_t (resonator voltages)
- ► field shaping at extraction radius helps
- note: strong decrease at relativistic energies (>1GeV not realistic for high intensity)

extraction with off-center orbits

betatron oscillations around the "closed orbit" can be used to increase the radial stepwidth by a factor 3 !

extraction profile measured at PSI Ring Cyclotron

PSI Ring Cyclotron – tune diagram

comments:

- running on the coupling resonance would transfer the large radial betatron amplitude into vertical oscillations, which must be avoided
- special care has to be taken with fine-tuning the bending field in the extraction region

longitudinal dynamics – flattop resonator

- variation of accelerating voltage over the bunch length increases energy spread
- thus a third harmonic flattop resonator is used to compensate the curvature of the resonator voltage w.r.t. time
- optimum condition: $U_{tot} = U_0(\cos \omega t \frac{1}{9}\cos 3\omega t)$

longitudinal space charge

- with overlapping turns use current sheet model; shielding of vacuum chamber must be considered; after W.Joho, Cyclotron Conf. Caen (1981)
- non-relativistic approximation
- accumulated energy spread couples to transverse plane and broadens beam

 $\Delta E_k = \frac{16}{3} \frac{e Z_0}{\beta_{\text{max}}} \cdot I_{\text{peak}} \cdot n_t^2$ accumulated energy spread: thus beam width scales as n_t^2 number of turns orbit separation scales as $U_t \propto n_t^{-1}$ average voltage gain per turn [MV] 3.4 2.6 2.1 1.7 1.5 1.3 1.15 4 scaling law $I_{max} \boxtimes N^{-3}$. 3 est. 3.0mA 2008 2004 1995 2 2007 1994 1993 \rightarrow thus with constant losses at the l [mA] extraction electrode the maximum 1992 0.5 attainable current scales as: 1988 $I_{\rm max} \propto {n_t}^{-3}$ 0.3 3 cavity mode 0.1 200 250 150 300 350 400 450 turns in Ring Cyclotron historical development of current and turn numbers 18 in PSI Ring Cyclotron

different regime for very short bunches: formation of circular bunch

in theory

strong space charge within a bending field leads to rapid cycloidal motion around bunch center [Chasman & Baltz (1984)]

 \rightarrow bound motion; circular equilibrium beam destribution

in practice

horizontal position [mm]

10

5

0 -

-5

head

time structure measurement in injector II cyclotron \rightarrow circular bunch shape observed

circular beam in tracking study (Ring Cyclotron)

with overlapping turns use current sheet model!

vertical force from space charge: $F_Z = \frac{n_v e^2}{\varepsilon_0 \gamma^2} \cdot Z$

particle density: $n_v = \frac{N}{\sqrt{(2\pi)^3}\sigma_y D_f R \cdot \Delta R}$

focusing force: $F_z = -m_0 \gamma \omega_c^2 v_{z0}^2 \cdot z$

 \rightarrow equating space charge and focusing force delivers an intensity limit for loss of focusing!

tune shift from forces:
$$\Delta v_Z \approx -\frac{2\pi r_p R^2 n_v}{\beta^2 \gamma^3 v_{Z0}}$$

Components

resonators, magnets, vacuum, diagnostics, extraction/injection (electrostatic elements)

components: cyclotron resonators

cyclotron resonators are basically box resonators

resonant frequency: $f_r = \frac{c}{2} \sqrt{\frac{1}{a^2} + \frac{1}{l^2}}$

beam passes in center plane;

accelerating voltage varies as sin(r)

cross sections of PSI resonators

copper resonator in operation at PSI's Ring cyclotron

- **f** = **50.6MHz**; **Q**₀ = **4,8**•**10**⁴; **U**_{max}=**1.2MV** (presently 0.85MV)
- wall plug to beam efficiency (RF Systems):
 32% [AC/DC: 90%, DC/RF: 64%, RF/Beam: 55%]
- transfer of up to 400kW power to the beam per cavity

components: sector magnets

 cyclotron magnets typically cover a wide radial range → magnets are heavy and bulky, thus costly

PSI sector magnet

iron weight: 250 tons coil weight: 28 tons orbit radius: 2.1...4.5 m spiral angle: 35 deg

components: sector magnets

- focusing and isochronicity need to be precisely controlled → sophisticated pole shaping including spiral bounds, many trim coil circuits
- modern cyclotrons use superconducting magnets; but for high intensity compactness is generally disadvantageous

cyclotron vacuum system

- pressure of 10⁻⁶ mbar is sufficient
- vacuum chamber with large radial width → difficult to achieve precisely matching sealing surfaces → noticeable leak rates must be accepted
- important design criterion is easy access and fast mountability
- use cryo pumps with high pumping speed and capacity

example: inflatable seals installed between resonators; length: 3.5m

injection/extraction schemes

- deflecting element should affect just one turn, not neighboured turn → critical, cause of losses
- often used: electrostatic deflectors with thin electrodes
- alternative: charge exchange, stripping foil; accelerate H⁻ or H₂⁺ to extract protons (problem: significant probability for unwanted loss of electron)

injection/extraction with electrostatic elements

electric rigidity:

$$E\rho = \frac{\gamma + 1}{\gamma} \frac{E_k}{q}$$
$$\approx 2U_k$$
$$\uparrow$$

for small energy; U_k = accelerating voltage the particle has passed

cyclotron instrumentation

example: PSI 72MeV injector cyclotron

instrumentation: radial probe for turn counting / orbit analysis

instrumentation: phase probes

phase probes are radially distributed RF pickups that detect the arrival time (phase) of bunches vs radius \rightarrow adjustment of isochronicity

measured phase vs. radius; green: reference phase for «good conditions»

trim coil settings (12 circuits across radius) green: predicted from phase measurement

cyclotron examples

TRIUMF, RIKEN, PSI Ring

cyclotron examples: TRIUMF

photo: iron poles with spiral shape $(\delta_{\rm max} = 70^{\circ})$

- p, 520MeV, up to 110kW beam power
- diameter: 18m (largest n.c. cyclotron worldwide)
- extraction by stripping H⁻
 → variable energy;
 multiple extraction points
 possible

cyclotron examples: RIKEN (Jp) superconducting cyclotron

K = 2,600 MeV Max. Field: 3.8T (235 MJ) RF frequency: 18-38 MHz Weight: 8,300 tons Diameter: 19m Height: 8m

superconducting Sector Magnets :6 RF Resonator :4 Injection elements. Extraction elements.

utilization: broad spectrum of ions up to Uranium

RIKEN SRC in the vault

examples: PSI High Intensity Proton Accelerator

losses and resulting activation in PSI Ring

- maximum intensity is limited by losses (typ. 200-400nA) and activation
- losses at extraction dominate the activation
- thus efforts at optimizing performance are concentrated on the extraction
 → largest possible turn separation; design of electrostatic septum

activation level allows for necessary service/repair work

- personnel dose for typical repair mission 50-300µSv
- optimization by adapted local shielding measures; shielded service boxes for exchange of activated components
- detailed planning of shutdown work

example (2010): personnel dose for 3 month shutdown:

47mSv, 186 persons max per person: 2.9mSv

map interpolated from ~30 measured locations

comparison of cyclotrons

	TRIUMF	RIKEN SRC (supercond.)	PSI Ring	PSI medical (supercond.)
particles	$H- \rightarrow p$	ions	р	р
K [MeV]	520	2600	592	250
magnets (poles)	(6)	6	8	(4)
peak field strength [T]	0.6	3.8	2.1	3.8
R _{inj} /R _{extr} [m]	0.25/3.87.9	3.6/5.4	2.4/4.5	-/0.8
P _{max} [kW]	110	1 (86Kr)	1300	0.25
extraction efficiency (tot. transmission)	0.9995 (0.70)	(0.63)	0.9998	0.80
extraction method	stripping foil	electrostatic deflector	electrostatic deflector	electrostatic deflector
comment	variable energy	ions, flexible	high intensity	compact

Discussion

0

arguments for or against cyclotrons for high intensity beam production

. 0

0

=

pro and contra cyclotron

- pro: compact and simple design
 - efficient power transfer
 - only few resonators and amplifiers needed
- con: injection/extraction critical
 - energy limited to 1GeV
 - complicated bending magnets
 - elaborate tuning required
- other: naturally CW operation

