

Why New Concepts?		
 In accelerators, targets are used as particle converters transform a beam of a known (and easy to produce) particle type to another one Examples: 		
• p+A \rightarrow p, p-bar, π^{\pm} , K [±] • p+A $\rightarrow \pi^{\pm}$, (K [±]) $\rightarrow \mu^{\pm}$, v • p+A $\rightarrow \pi^{\pm} \rightarrow \mu^{\pm} \rightarrow v_{e}$, v • p(or ion) +A \rightarrow ions(A,2)	secondary beams neutrino (super)beams μ μ-collider 2) fragmented ions or RIB	
 The key factor here is FLUX we tend to study more and more rare physics effects we want to use and make physics with tertiary beams, v,µ 		
 The gain in a collider is quadratic to the source strength (target) Capture and cooling to arrive to small interaction area is important too High flux → High-power : MW, or MMW of beam power onto the target 		
I. Efthymiopouls - CERN	May 31, 2011	2

5/30/11

