

Wir schaffen Wissen - heute für morgen

Cern Accelerator School High Power Hadron Machines Bilbao, Spain 24 May – 2 June

Introduction II - short version

25 May 2011 Kurt Clausen, Paul Scherrer Institut, CH

Proton accelerator at PSI

PSI, 20.05.11

Diffraction from crystals - structure

- 1. Neutrons see the Nuclei
- 2. Neutrons see Elementary Magnets
- **3.** Neutrons see light Atoms next to Heavy Ones
- 4. Neutrons measure the Velocity of Atoms
- 5. Neutrons penetrate deep into Matter
 - **Neutrons are Elementary Particles**

Bragg's law: $m\lambda = 2d \sin \theta$

6.

Lattice distortion and magnetic structure in NiO under high pressures (up to 130kbar)

S. Klotz, Th. Strässle, G. Rousse G. Hamel, V. Pomjakushin, *APL* 2005.

V. Pomjakushin PSI

Neutron Scattering Length [fm]

1 fm = 0.1x10⁻¹² cm

J Kohlbrecher PSI

Small Angle Neutron Scattering

J Kohlbrecher PSI

dx.doi.org/10.1021/nl2001499 Nano Letters 2011, 11, 1664–1670

Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes

E. Amstad¹, J. Kohlbrecher², E. Müller³, T. Schweizer⁴, M. Textor¹, and E. Reimhult¹

¹Laboratory for Surface Science and Technology, ETH Zurich, ²Laboratory for Neutron Scattering, Paul Scherrer Institute, ³EMEZ, Electron Microscopy ETH Zurich, ⁴Polymer Chemistry, Department of Materials, ETH Zurich

J Kohlbrecher PSI

Tomography (Video)

Firearm Cartridge

Cartridge type 7.5 × 55mm Swiss Sample size ø12.65mm × 77.7mm Voxel size 13.2µm

Florian Schmid, PSI

Recorded at

Final commengs

The two introductory lectures – Introduction I and II today were not about Hadron machines or Acellerators – but about the use of these facilities!

The intention was through a series of examples to demonstrate why Hadron Machines provide such attractive tools for a very broad spectrum of science and technology, and why the users of these machines cry for ever increasing performance.

The introduction was by no means comprehensive of neither science at hadron machines nor the different centres operating hadron machines, but was dominated by examples of work done by members of the NUM (Neutron and Muon) Department at PSI, using the facilities at PSI and Cern.

Acknowledgements: I would like to acknowledge my colleagues at PSI for providing material for this presentation – and the Cern acellerator school for inviting me.

Cern Acellerator School