

Continuc	ous Wave Machines					
Lab	Accelerator	Туре	RF Source	Freq. (MHz)	Power (kW)	
RIKEN	RIBF SRC	Cyclotron	Tetrode	18 to 42	150	
TRIUMF	TRIUMF	Cyclotron	Tetrode	23.06	125	
PSI	PSI	Cyclotron	Tetrode	50	850	
FMIF	IFMIF	Linac	Diacrode	175	1000	
CERN	SPS (Philips)	Synchrotron	Tetrode	200	35	
CERN	SPS (Siemens)	Synchrotron	Tetrode	200	125	
CERN	LHC	Synchrotron	Klystron	400	300	
Pulsed N	lachines					
Lab	Accelerator	Туре	RF Source	Freq. (MHz)	Peak (MW)	Duty
RAL	ISIS Synchrotron	Synchrotron	Tetrode	1.3 to 3.1	1	50%
GSI	FAIR UNILAC	Linac	Tetrode	36	2	50%
GIST	FAIR UNILAC	Linac	Tetrode	108	1.6	50%
RAL	ISIS Linac	Linac	Triode	202.5	5	2%
GSI	FAIR Linac	Linac	Klystron	325	2.5	0.08%
ESS	ESS DTL	Linac	Klystron	352.2	1.3 and 2.5	5%
ORNL	SNS RFQ & DTL	Linac	Klystron	402.5	2.5	8%
ESS	ESS Ellipt	Linac	Klystron	704.4	2	4%
	SNS CCI	Linac	Klystron	805	5	Qº/_

Cockcroft Institute	CI	LANCASTER				
Class	Conduction angle	Maximum theoretical efficiency	Gain increasing	Harmonics increasing		
A	360°	50%				
AB	180°-360°	50% - 78%				
В	180°	78%				
С	< 180°	78% - 100%				
• A r • (All classes apart fr arrow band ampli Class AB or B usu	om A must have a res fiers ally used for accelerate	onant load and are	therefore		
May 2011 CAS High Power Hadron Machines, Bilbao						

