

High power, high intensity hadron synchrotrons

Oliver Boine-Frankenheim GSI and Technische Universität, Darmstadt

Contents

- Working principle of synchrotrons
- High power, high intensity synchrotron facilities
- Acceleration, RF buckets and RF cavities
- Bending, strong focusing and magnets
- Resonances and 'space charge limit'
- Injection and extraction
- Vacuum chambers and eddy current effects
- Summary

Oliver Boine-Frankenheim, CAS, Bilbao, May 26, 2011

Working principle of a synchrotron I

Ring accelerator with constant radius R, variable revolution frequency ω_0 and B-Field.

Motion in a constant, homogenous B-field ($\vec{B} = B_v \vec{e}_v$):

SIS-18 Synchrotron at GSI (L=216 m)

Dipole magnets (red), quadrupole magnets (vellow)

UNIVERSITÄT DARMSTAD 3

Working principle of a synchrotron II

Repetition rate (T_{rep})⁻¹: (time needed for one complete cycle)⁻¹

Total beam energy:
$$W_{tot} = NW_{kin}$$

Beam power: $P_{beam} = \frac{W_{tot}}{T_{rep}}$

Oliver Boine-Frankenheim, CAS, Bilbao, May 26, 2011

Types of synchrotrons (a bit arbitrary):

- slow cycling synchrotron: < 1 Hz
- fast cycling synchrotron: 1-10 Hz
- Rapid Cycling Synchrotron (RCS): > 10 Hz

Contents

- Working principle of synchrotrons
- High power, high intensity synchrotron facilities
- Acceleration, RF buckets and RF cavities
- Bending, strong focusing and magnets
- Resonances and 'space charge limit'
- Injection and extraction
- Vacuum chambers and eddy current effects
- Summary

High power, high intensity synchrotrons worldwide (not complete !)

	Energy	Radius	Rep. rate	Power	Particles /cycle	Application	Remarks
ISIS, UK	0.8 GeV	168 m	50 Hz	0.16 MW	3x10 ¹³	Neutrons, muons	RCS
J-PARC RCS, Japan	3 GeV	348 m	25 Hz	1 MW (design)	4x10 ¹³ (design)	Injector for MR, Neutrons,	RCS, 0.3 MW
J-PARC MR, Japan	50 GeV	1567 m	0.3 Hz	0.75 MW (design)	4x10¹⁴ (design)	Neutrinos,	
CERN PSB	1.4 GeV	157 m	1 Hz	1.5 kW	(4x) 2x10 ¹²	LHC injector chain	4 rings
CERN PS	26 GeV	630 m	0.3 Hz	25 kW	2x10 ¹³	LHC injector chain	
AGS Booster	1.5 GeV	202 m	7.5 Hz	45 kW	2.5x10 ¹³	RHIC injector chain	p-Au
AGS	24 GeV	807 m	0.5 Hz	130 kW	7x10 ¹³	RHIC injector chain	p-Au
SIS-18, GSI	1 GeV/u	216 m	3 Hz	4 kW	10 ¹⁰ Uranium	Injector for SIS-100, RIBs	p-U
SIS-100, GSI	2.7 GeV/ u	1080 m	1 Hz	50 kW	5x10 ¹¹ Uranium	RIBs, pbars	p-U, sc magnets

RCS: Rapid Cycling Synchrotron (> 10 Hz), **Blue**: 'Record values'

TECHNISCHE UNIVERSITÄT DARMSTADT

J-PARC

Contents

- Working principle of synchrotrons
- High power, high intensity synchrotron facilities
- Acceleration, RF buckets and RF cavities
- Bending, strong focusing and magnets
- Resonances and 'space charge limit'
- Injection and extraction
- Vacuum chambers and eddy current effects
- Summary

rf cavities for synchrotrons

variable frequency

rf cavities filled with **ferrite ring cores** (magnetic permeability $\mu(B_{bias})$)

Reduced cavity eigenfrequency: $\omega_{rf}(B) = \sqrt{Ferrite}$ Ferrite: $\mu \approx 100$

Cavity quality factor and max. frequency: $Q \approx 10-50$ $f_{rf} < 10$ MHz

SIS-18 cavity (length=3.4 m): 14 kV, Q=10, 0.8-5.4 MHz

bias winding

Magnetic Alloy filled cavities (e.g. J-PARC RCS):

- broadband: no tuning required $Q \lesssim 2$ $\mu \approx 1000$
- compact cavities (important for rapid cycling rings)
- larger losses

Energy gain in a synchrotron

Synchronous particle

(enters the cavity always with the same phase ϕ_s):

$$(W_0)_{n+1} = (W_0)_n + qV_0\sin\phi_s$$

Energy gain per turn:
$$\Delta W_0 = qV_0 \sin \phi_s$$

$$W_0^2 = (p_0 c)^2 + (mc^2)^2 \implies \Delta W_0 = v \Delta p_0$$

Rigidity: $\Delta p_0 = q R_0 \Delta B_y$

$$T_0 = \frac{2\pi R}{v_0}$$

Revolution period:

$$\Rightarrow \Delta W_0 = 2\pi R q R_0 \frac{\Delta B_y}{T_0}$$

Voltage requirement (single rf):

$$R_0 \dot{B}_0 = \frac{V_0}{2\pi R} \sin \phi_s$$

dual rf mode:
$$R_0 \dot{B}_0 = \frac{V_0}{2\pi R} (\sin \phi_{s1} - \alpha \sin 2\phi_{s2})$$

RCS: Installed voltage per meter counts ! Example J-PARC RCS: 400 kV/350 m ≈ 1 kV/m -> compact Magnetic Alloy cavities !

rf buckets

Dual harmonic rf buckets

Dual rf systems are employed e.g. in: CERN PSB, ISIS, J-PARC RCS, GSI SIS-18

Stationary (ϕ_s =0, ϕ_{s2} =0) rf wave form

$$V^{RF}(\phi) = V_0 \left(\sin\phi - \frac{1}{2}\sin 2\phi\right) \approx \frac{1}{2}V_0\phi^3$$

Equation of motion: $\ddot{\phi} = -\frac{\omega_s^2}{2}\phi^3$

Amplitude-dependent synchrotron frequency: $\omega_s(\hat{\phi}) \approx \omega' \hat{\phi}$

Advantages:

- flattened bunches (lower peak current)
- larger bucket area

Complication:

- control of the phase difference
- 'fully nonlinear synchrotron oscillations'

Example case SIS-18: V₀=40/16 kV, h=2/4 (f_{min}=430/860 kHz)

Non-Stationary ($\phi_s > 0$, $\phi_{s2} > 0$) rf wave form:

$$\frac{V(\phi)}{V_0} = \sin(\phi) - \sin(\phi_s) - \alpha \left(\sin\left[\phi_{s2} + 2(\phi - \phi_s)\right] - \sin(\phi_{s2}) \right)$$

SIS-18: Dual rf bucket with flattened bunch profile 0.004 1.0 $B_{f} = 0.35$ spread 0.8 0.002 bunch bucket boundary 0.6 momentum 0.000 0.4 З -0.002 0.2 φ_s=45⁰ $\omega_{s}(\phi)$ -0.0040.0 -100100 n ø [deg] UNIVERSITÄT 12

Fast bunch compression

For applications e.g. in nuclear physics a single, short bunch is extracted to the production target.

Bunch rotation:

Sudden switch-on of an additional rf voltage causes the bunch to rotate in the bucket.

The compression takes only a quarter of a synchrotron period.

 $T_{rot} = \frac{T_s}{4} < 1 \text{ ms}$

-> (broadband) rf cavity with fast rise time needed !

Oliver Boine-Frankenheim, CAS, Bilbao, May 26, 2011

Bunch rotation in SIS-18

Stationary bucket, small amplitudes:

1.0

0.85

0.75 0.62

0.50

0.37 0.31 0.25

0.12

0.070 0

$$\dot{\phi}^2 + \omega_s^2 \phi^2 = \text{const}$$

 $\Rightarrow \phi_f = \frac{\dot{\phi}_i}{\omega_s}$
Bunch area:

$$A_B = \phi_i \dot{\phi}_i = \phi_f \dot{\phi}_f$$

$$\Rightarrow \phi_f = \frac{A_B}{\omega_s \phi_i} \propto \frac{\dot{\phi}_i}{\sqrt{V_0}}$$

Bunch length: $\tau_f = \frac{\phi_f}{\omega_{rf}}$

Final bunch length depends on the initial momentum spread !

Bunch compressor cavity

Magnetic alloy loaded cavity (length=1 m) with: 30 kV, 0.8 MHz, Q=1, 0.1 ms pulse duration.

GSI Synchrotron SIS-18

In the projected SIS-100: fast extraction of 5x10¹¹ U²⁸⁺ in one short (50 ns) bunch -> 0.5 TW peak power !

TECHNISCHE UNIVERSITÄT 14

'In-Flight' production of radioactive ion beams **Example: FAIR project at GSI**

Primary heavy-ion beam intensity directly relates to the yield of exotic ions

Contents

- Working principle of synchrotrons
- High power, high intensity synchrotron facilities
- Acceleration, RF buckets and RF cavities
- Bending, strong focusing and magnets
- Resonances and 'space charge limit'
- Injection and extraction
- Vacuum chambers and eddy current effects
- Summary

Transverse motion in dipole magnets

Rapid/fast ramping dipole magnets Examples

Large apertures

SIS-18 dipoles: 20 cm x 8 cm J-PARC RCS: 25 cm x 19 cm

Ramping rates (Bdot):

SIS-18 dipoles: 10 T/s J-PARC RCS dipoles: 40 T/s

Max. B-Field

SIS-18: 1.9 T

J-PARC RCS: 1.1 T

SIS-100 superferric dipole:

13 cm x 6 cm Bdot = 4 T/s B_{max} = 2 T pipe at 20 K

Fast ramping 'cold' magnet of the nuclotron-type

Fast ramping (3 Hz) SIS-18 dipoles

J-PARC RCS (25 Hz) dipole

Quadrupole magnets and beam focusing

Quadrupole magnets at GSI

Equations of motion:

Focusing gradient:

 $\kappa = \frac{q}{p_0} \frac{\partial B_x}{\partial y} = \frac{q}{p_0} \frac{\partial B_y}{\partial x}$

$$x'' + \kappa(s)x = 0$$
 (horizontal

 $y'' - \kappa(s)x = 0$

(vertical)

Strong Focusing

Periodic focusing : $\kappa(s) = \kappa(s+L)$

Betatron oscillations:

$$x(s) = \sqrt{\hat{\beta}_x \epsilon_x} \cos(\psi(s) + \psi_0)$$

(Beam envelope)

Phase advance: $\Psi(s) = \int_{0}^{s} \frac{ds}{\hat{\beta}_{x}(s)}$. **Tune:** $Q_{x} = \frac{1}{2\pi} \int_{0}^{c} \frac{ds}{\hat{\beta}_{x}(s)}$. Number of betatron oscillations per turn With bends: $x(s) = x_{\beta}(s) + D(s) \frac{\Delta p}{p_{0}}$ Dispersion function: D(s) closed orbit for p < p_{0} central design orbit = closed orbit for p > p_{0} $x_{D}(s) = D(s) \cdot \frac{\Delta p}{p_{0}}$

Contents

- Working principle of synchrotrons
- High power, high intensity synchrotron facilities
- Acceleration, RF buckets and RF cavities
- Bending, strong focusing and magnets
- Resonances and 'space charge limit'
- Injection and extraction
- Vacuum chambers and eddy current effects
- Summary

Transverse resonances and 'space charge limit'

Space charge limit in a 'real' synchrotron

Achieved beam intensities in the SIS-18 synchrotron Light vs. heavy ions

Injection energy: 11.4 MeV/u ($\beta_0=0.155$), Emittances: $\epsilon_{x,y} = 150 / 50 \text{ mm mrad}$

UNIVERSITÄT

24

Contents

- Working principle of synchrotrons
- High power, high intensity synchrotron facilities
- Acceleration, RF buckets and RF cavities
- Bending, strong focusing and magnets
- Resonances and 'space charge limit'
- Injection and extraction
- Vacuum chambers and eddy current effects
- Summary

Injection: Bunch-to-bucket

From a smaller 'booster' synchrotron

Kicker: fast dipole magnet with a rise time of 10-100 ns and a pulse duration of μ s.

27

DARMSTAD

(Slow) extraction

Slow extraction examples: GSI SIS-18 and SIS-100, J-PARC MR, BNL AGS

Fast extraction: in one turn using a kicker (e.g. after bunch compression.)

Slow extraction: over many turns (up to seconds !). The horizontal tune is moved close to a third order resonance excited by sextupole magnets. The particles on the resonance are extracted using electrostatic and magnetic septa.

TECHNISCHE UNIVERSITÄT

DARMSTAD

28

Contents

- Working principle of synchrotrons
- High power, high intensity synchrotron facilities
- Acceleration, RF buckets and RF cavities
- Bending, strong focusing and magnets
- Resonances and 'space charge limit'
- Injection and extraction
- Vacuum chambers and eddy current effects
- Summary

Vacuum chamber

Main function:

enclose the vacuum of 10⁻⁹ mbar (protons) or 10⁻¹² mbar (ions)
 active pumping and low desorption inner surface

shielding of the EM fields generated by the beam
 -> low beam impedance

Problems:

Heating of the pipe by eddy currents -> outgassing and vacuum degradation

Magnetic fields induced by eddy currents -> resonances and beam loss

The **beam pipe in the SIS-18 magnets** is d=0.3 mm thick (stainless steel)

Beam pipe is one of the most complex components in a synchrotron !

Eddy-currents in a rectangular beam pipe

Thin beam pipes for fast ramping synchrotrons

Rf shielding: $d \gtrsim \delta_s$

Skin depth: $\delta_s = \delta_s$

Conductivity: $\sigma \approx 10^6 (\Omega m)^{-1}$

Thin (0.3 mm) stainless steel beam pipe for the projected SIS-100 synchrotron

Thin (0.2-0.3 mm) stainless steel pipes for fast ramping machines (< 5 Hz):

- still mechanically robust (with supporting rips etc.)
- tolerable heating (< 10 W/m) and field distortion
- sufficient shielding of EM fields for frequencies larger 50 kHz
- problem: large resistive impedance !

Transverse resistive impedance:

$$Z_{\perp}(\omega) = \frac{2cR}{b^3 \sigma \omega d}$$

For d=0.3 mm, f_0 =100 kHz: $\delta_s(f_0) \approx 1.6 \text{ mm}$

Structures behind the pipe can contribute for the lowest frequencies !

TECHNISCHE UNIVERSITAT 32

Vacuum chambers for RCS

For rapid cycling synchrotrons (above 5-10 Hz) other solutions are required.

J-PARC RCS ceramics beam pipe with outer rf shield (copper stripes).

ISIS ceramic beam pipe with wire cage.

- Synchrotrons: typically the 'working horse' in an accelerator chain.
- Average beam power up to \approx 300 kW (achieved) and 1 MW (expected at J-PARC) with RCSs.
- In fast ramping synchrotrons: Large peak power per cycle due to bunch compression.
- Intensity limitations in proton synchrotrons:
 - At injection energy: Space charge tune spread and ring resonances ('hard limit').
 - At all energies: Coherent beam instabilities (not covered in this lecture)
 - At top energy: Beam loss induced activation of accelerator components
- Additional intensity limitations in heavy-ion synchrotrons:
 - Current from the ion source.
 - Efficiency of the multi-turn injection.
 - Charge changing processes with residual gas molecules.

Additional transparencies

Space charge tune shift

Longitudinal motion in a circular accelerator

Examples: ISIS, J-PARC RCS, CERN PSB (with Linac 4)

