

Mean Time To Failure MTTF

The Mean Time To Failure (MTTF) of a system is the average time of operation of the system before a failure occurs. This is usually the <u>value of interest</u> to characterize the reliability of a system.

$$MTTF = \int_0^\infty tf(t).dt = \int_0^\infty R(t).dt$$

* Using an exponential distribution for f(t) – constant failure rate λ – the MTTF is simply:

$$MTTF = \int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}$$

(MTTF=1/0.01=100 hours in our previous example) (note that R(MTTF) is always 1/e = 36.8%)

Very convenient ! -> if MTTF is know, the distribution is specified ©

The Mean Time Between (2 consecutive) Failure (MTBF) is generally the metrix being used for repairable systems. MTBF = MTTF only for constant failure rate.

Jean-Luc Biarrotte, CAS High Power Hadron Machines, Bilbao, June 1st, 2011.

Maintainability & Availability * When a system fails, it has to be repaired (or changed). Maintainability is the probability of isolating and repairing a fault in a system within a given time. * The same formalism can be used, leading to the definition of the Mean Time To Repair (MTTR), which is the expected value of the repair time. * From Reliability & Maintainability, the Availability function A(t) of the system can be calculated. It is the probability that the system is available at time t. * For long times, it converges towards the steady-state availability: $\bar{A} = \lim_{t \to \infty} A(t) = \frac{MTBF}{MTBF + MTTR} = \frac{system uptime}{system uptime + system downtime}$

М	YRRHA official key dates	
≻	1998: first studies	
≻	2002: pre-design "Myrrha Draft 1" (350 MeV cyclotron)	
۶	2002-2004: studied as one of the 3 reactor designs within the PDS-XADS FP5 project (cyclotron turns into linac, fault-tolerance concept is introduced)	
≻	2005: updated design "Myrrha Draft 2" (350 MeV linac)	
۶	2005-2010: studied as the XT-ADS demo within the FP6 IP-EUROTRANS (600 MeV linac conceptual design, R&D activities w/ focus on reliability)	
	2010: MYRRHA is on the ESFRI list, and is officially supported by the Belgium government at a 40% level (384M€, w/ 60M€ already engaged)	
٨	2010-2015: Engineering design, licensing process, set-up of the international consortium, w/ support from the FP7 projects CDT, FREYA & MAX	
≻	2016-2019: construction phase	
≻	2020-2023: commissioning and progressive start-up	
≻	2024: full exploitation	
Jean-	Luc Biarrotte, CAS High Power Hadron Machines, Bilbao, June 1st, 2011.	20

Proton beam specifications					
Proton beam general initial specifications within EUROTRANS					
	Transmuter demonstrator (XT-ADS / MYRRHA project)	Industrial transmuter (EFIT)			
Proton beam current	2.5 mA (& up to 4 mA for burn-up compensation	l) ~ 20 mA			
Proton energy	600 MeV	800 MeV			
Allowed beam trips nb (>3s)	~ <10per 3-month operation cycle	~<3 per year			
Beam entry into the reactor	Vertically from above				
Beam stability on target	Energy: ±1% - Current: ±2% - Position & size: ±10%				
Beam time structure	CW (w/ low frequency 200µs beam "holes" for sub-criticality monitoring)				
Extreme reliability level !					
High power CW accelerators					

Reliability spec – from the reactor side (1)							
*	Pre	esent specifi	cations inspired from the	e PHE	NIX rea	ctor (fast, Na liqu	uid metal)
	 PHENIX spec. (20 years operation) Fast stops (210s) : < 600 (200 effective) Emergency stops (SCRAM 0.7s) : < 200 (100 effective) Total => 10 stops / 3 months effective 						
*	PHENIX maintenance showed that a few elements (heat exchangers) didn't tolerate thermal transients → CAUTION !! Cimulations are formed to access the number of admissible thermal charges					locks	
	lead to very different results, o.o.m. => 1000 stops / 3 months \rightarrow OPTIMISM !						
	\triangleright	U.S study (A	AA project)	\succ	AREVA	analysis for XT-AI	DS
	۶	JAEA study	(ADS 800 MWth)	۶	SCK*C	EN study for MYRF	RHA
			Trips	Allowed	d Number		
				/ cycle		/year	
			< 10 seconds	800		2500	
			10 seconds – 5 minutes	80		250	
			> 5 minutes	8		25	
Jean-L	uc Biar	rotte, CAS High Power H	adron Machines, Bilbao, June 1st, 2011.				29

 DOE white paper on ADS (Septemb Accelerator and Target Technology for Accelerator Dr Transmutation and Energy Production A. Ait Abderrahim⁵, J. Galambos⁶, Y. Gohar⁸, S. Henderson⁴⁵, G. Lawrence⁶, T. McMa Mueller⁶, S. Nagaitsev⁶, J. Nolen⁸, E. Pitcher^{8*}, R. Rimmer¹, R. Sheffield⁶, M. Tod ⁴Argonne National Laboratory ⁶Brookhaven National Laboratory ⁶Oak Ridge National Laboratory ⁴Los Alamos National Laboratory ⁶Cher.NL2P3, France ⁸SCK+CEN, Mol, Belgium Co-chairs September 17, 2010 	Der 2010) iven It seems that a compromise is still to establish in the ADS reactor community! Some more or less "fuzzy" points => - data of irradiated steel T91 & 316L, - impact of oxyde layer errosion/corrosion by LBE on cladding embrittlement, - strategy for LBE cooling management during trips, - needed time for start-up procedures after a trip
Finding #6: Recent detailed analyses of therma requirements that are much less stringent the commercial power production remain at a few rates for the transmutation mission lie in the rar greater than one second.	I transients in the subcritical core lead to beam tri an previously thought; while allowed trip rates fo long interruptions per year, relevant permissible tri nge of many thousands of trips per year with duratio

Jean-Luc Biarrotte, CAS High Power Hadron Machines, Bilbao, June 1st, 2011.

JECTOR BUILDING			. Opper view	REA	CTOR BUILDING
	SUPERCONDUCTING	S LINAC TUNNEL	faste Am + 10e		i
βε . 03-03-03 ε Section #1 (β-0.35 spoke section)	μα	6 and and and a	an SCL BHYROM Ason	n 20 "	. Carlot - Cardon
				65	
 Spoke »-type su Elliptical superco 	uperconducting cavir nducting cavities * 9	ties * 63 (352 MHz, 94 (704 MHz, famili	, family #1) es #2 et #3)		
 Spoke »-type su Elliptical superco Total length: 215 r 	uperconducting cavir nducting cavities * 9	ties * 63 (352 MHz, 94 (704 MHz, famili Section number	, family #1) es #2 et #3)	ected of the second second sec	
 Spoke »-type su Elliptical superco Total length: 215 r 	uperconducting cavir nducting cavities * 9 metres	ties * 63 (352 MHz,)4 (704 MHz, famili Section number Input energy (MeV)	, family #1) es #2 et #3)	ecter to response such orsar 2 86.4	20 20 20 20 20 20 20 20 20 20
 Spoke »-type st Elliptical superco Total length: 215 r Modular appolaret 	uperconducting cavir nducting cavities * 9 metres	ties * 63 (352 MHz,)4 (704 MHz, familie Section number Input energy (MeV) Output energy (MeV)	, family #1) es #2 et #3) 170 864	2 86.4 186.2	20 I I I I I I I I I I I I I I I I I I I
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat 	uperconducting cavir nducting cavities * 9 metres ing structures	ties * 63 (352 MHz, 94 (704 MHz, familio Section number Input energy (MeV) Output energy (MeV) Cavity technology	, family #1) es #2 et #3) 10 864 8peke 352 2 MHz	estate Remote according or 5.4 186.2 Elliptical	20 3 186.2 605.3 704.4 MHz
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po 	uperconducting cavir nducting cavities * 9 metres ing structures	ties * 63 (352 MHz, 94 (704 MHz, familio Section number Input energy (MeV) Output energy (MeV) Cavity technology Cavity geometrical β	, family #1) es #2 et #3) <u>1</u> 17.0 86.4 Spoke 352 2 MHz 0.35	2 86.4 186.2 Elliptical 0.47	20 3 186.2 605.3 704.4 MHz 0.66
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po 	uperconducting cavir nducting cavities * 9 metres ing structures owered	ties * 63 (352 MHz,)4 (704 MHz, famili Section number Input energy (MeV) Output energy (MeV) Cavity technology Cavity geometrical β Cavity geometrical β Cavity optimal β	, family #1) es #2 et #3) 17.0 86.4 Spoke 352 2 MHz 0.35 0.37	2 86.4 186.2 Elliptical 0.47 0.51	20 3 186.2 605.3 704.4 MHz 0.66 0.70 0.66
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po Canability of on-lin 	uperconducting cavir nducting cavities * 9 metres ing structures owered	ties * 63 (352 MHz, 94 (704 MHz, familio Section number Input energy (MeV) Output energy (MeV) Cavity technology Cavity geometrical β Cavity optimal β Nb of cells / cavity Eccusion type	, family #1) es #2 et #3) 1 170 86.4 Spoke 352 2 MHz 0.35 0.37 2 N	2 86.4 186.2 Elliptical 0.47 0.51 5 C.madamaole doublet	20 3 186.2 605.3 704.4 MHz 0.66 0.70 5
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po Capability of on-lir 	uperconducting cavir nducting cavities * 9 metres ing structures owered ne fault-tolerance	ties * 63 (352 MHz, 4 (704 MHz, familie Section number Input energy (MeV) Output energy (MeV) Cavity technology Cavity geometrical β Cavity optimal β Nb of cells / cavity Focusing type Nb of cells / cavity	, family #1) es #2 et #3) 1 17.0 86.4 8064 8522 MHz 0.35 0.37 2 N 3	2 86.4 186.2 Elliptical 0.47 0.51 5 C quadrupole doublet	20 3 186.2 605.3 704.4 MHz 0.66 0.70 5 5 4
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po Capability of on-lir 	uperconducting cavir nducting cavities * 9 metres ing structures owered ne fault-tolerance	ties * 63 (352 MHz, 94 (704 MHz, familie Section number Input energy (MeV) Output energy (MeV) Cavity technology Cavity geometrical β Cavity geometrical β	, family #1) es #2 et #3) 17.0 86.4 Spoke 352.2 MHz 0.35 0.37 2 N 3 63	2 86.4 186.2 Elliptical 0.47 0.51 5 C quadrupole doublet 2 30	20 3 186.2 605.3 704.4 MHz 0.66 0.70 5 8 4 64
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po Capability of on-lir Comfortable marg 	uperconducting cavir nducting cavities * 9 metres ing structures owered ne fault-tolerance gin for operating	ties * 63 (352 MHz, 94 (704 MHz, familie <u>Section number</u> Input energy (MeV) Output energy (MeV) Cavity technology Cavity geometrical β Cavity optimal β Nb of cells / cavity Focusing type Nb of cavities / eryomodule Total nb of cavities Acc. field (MV/m @ opt, β)	, family #1) es #2 et #3) 1 17.0 86.4 Spoke 352.2 MHz 0.35 0.37 2 1 3 63 5.3	2 86.4 186.2 Elliptical 0.47 0.51 5 C quadrupole doublet 2 30 8.5	20 3 186.2 605.3 704.4 MHz 0.66 0.70 5 4 4 10.3
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po Capability of on-lir Comfortable marg points (50mT B, 25) 	uperconducting cavir nducting cavities * 9 metres ing structures owered he fault-tolerance gin for operating	ties * 63 (352 MHz, 44 (704 MHz, familie Section number Input energy (MeV) Output energy (MeV) Cavity genetrical β Cavity genetrical β Cavity genetrical β Cavity genetrical β Nb of cells / cavity Focusing type Nb of cavities / cryomodule Total μ b of cavities Acc. field (MV/m @ opt. β) Synchronous phase (deg)	, family #1) es #2 et #3) <u>I</u> 17.0 86.4 850k8 552 2 MHz 0.35 0.37 2 1 3 8 63 5.3 -40 to -18	2 86.4 186.2 Elliptical 0.47 0.51 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 3 186.2 605.3 704.4 MHz 0.66 0.70 5 5 4 61 10.3 to -15
 Spoke »-type su Elliptical superco Total length: 215 r Modular accelerat independently po Capability of on-lir Comfortable marg points (50mT B_{pk}, 25 	uperconducting cavir nducting cavities * 9 metres ing structures owered ne fault-tolerance gin for operating iMV/m E _{pk})	ties * 63 (352 MHz, 94 (704 MHz, familie Section number Input energy (MeV) Output energy (MeV) Cavity technology Cavity geometrical β Cavity geometrical β	, family #1) es #2 et #3) 1 17.0 86.4 Spoke 352 2 MHz 0.35 0.37 2 1 3 63 63 5.3 -40 to -18 1 to 8	2 86.4 186.2 Elliptical 0.47 0.51 5 C quadrupole doublets 2 30 8.5 -36 1 3 to 22	20 3 186.2 605.3 704.4 MHz 0.66 0.70 5 4 64 10.3 to -15 17 to 38

C	onclusions
>	Reliability ≠ Availability !!!
>	With ADS (& the MYRRHA project), reliability is for the first time a requirement for the accelerator, not only a wish
>	The goal MTBF (about 250h) is very ambitious but seems reachable, given that:
1.	Focus is made on reliability concepts during the whole design phase: overdesign / redundancy / repairability
2.	Tolerance cases are implemented to the maximum extent, which implies especially the development of an efficient fault diagnostic systems
3.	A sufficiently long period of commissioning and practice is foreseen during the early life of the MYRRHA machine
	My usual personal message to the MYRRHA team: "We (accelerator community) can not reasonably promise the present required reliability spec. (10 trips/ 3 months) before at least a few years of commissioning & tuning of the MYRRHA machine. Please anticipate this in the reactor design."
Jean	Luc Biarrotte CAS High Power Hadron Machines. Bilbao, June 1st. 2011. 51

Chosen www ressources			
➢ Reliability <u>http://www</u>	theory: .weibull.com/		
> MYRRHA p http://myrr	project: ha.sckcen.be/		
 Proc. of Ac ARW-2002 ARW-2009 ARW-2011 	ccelerator Reliability Workshops: (Grenoble): <u>http://www.esrf.eu/Accelerators/Conferences/ARW/</u> (Vancouver): <u>http://www.triumf.info/hosted/ARW/</u> (Cape Town): <u>http://www.arw2011.tlabs.ac.za/arw2011/</u>	<u>/</u>	
MYRRHA <u>http://ipnw</u>	accelerator design: eb.in2p3.fr/MAX		
Jean-Luc Biarrotte, CAS High Po	wer Hadron Machines, Bilbao, June 1st 2011. 5	52	