Introduction to Accelerators III – Applications – E. Wilson

- Low energy irradiation of material
- Dose and beam power
- Synchrotron light sources (ESRF)
- The cone of synchrotron radiation
- The spectrum
- The scale of things
- Diffraction Lithography
- Brightness
- Spallation source
- GSI Ions Galore!
- HYOGO (JPN)- Ion beam medical center
- Energy amplifier
- Inertial confinement
- The development of accelerators
- Need for higher energy
- Center of mass v. Fixed target
- Luminosity
- CLIC

Fig.

E.J.N.Wilson - Introduction to Accelerators III - Applications

Accelerators world-wide

Table II – Particle accelerator family worldwide (items 2 to 6: lack of exact statistics, authors estimation only)

Category of accelerators	Number in use
(1) High Energy Accelerators	112
BIOMEDICAL ACCELERATORS	
(2) Radiotherapy	> 4000
(3) Research including Biomedical Research	800
(4) Medical Radioisotope Production	~ 200
(5) Accelerators in Industry	~ 1500
(6) Ion Implanters	> 2000
(7) Surface Modification Centres and Research	~ 1000
(8) Synchrotron Radiation Sources	~ 50
Total in 1994	~ 9962
TOTAL estimated for 1995	~10,000

Dynamitron

Dynam2.pct

Fig.

E.J.N.Wilson - Introduction to Accelerators III – Applications

Low energy irradiation of material

- Electrons are easy to produce, accelerate and shield
- Use an energy below the nuclear reaction threshold of 10 MeV. (7 MeV in some cases)

Sharf 8.2.jpg

Production line for sterilization

AC9.8.95_08(Impela).pct

Fig. Slide 5

Dose and beam power

 A milliamp of particles, each losing 2 MeV, passing through a 1 cm cube of material will for one second will deposit a total energy of

 $10^{-3} \times 2 \ 10^{6} = 2.10^{3}$ Joules

This corresponds to a (beam) power of 2 kW
1 Gy is 1 Joule per kilo and if the density of the cube is 1 this will be a dose of

 $10^{-3} \times 2 \ 10^{3} = 2 \ \text{Gy}$

- This is not much and we need several kGy to disinfect material say 100 kW for 20 seconds
- The dose would be the same for a thin film but we can use a lower energy and reach a much higher dose – 250 kGy to polymerize film.

Methods of analysis by scattering

Spectrum from PIXE analysis

PIXE.pct

Fig. Slide 8

Scanning a lorry for drugs

Synchrotron light sources (ESRF)

AC9.8.95_16(ESRF).pct

Fig. Slide 10

The cone of synchrotron radiation

When an electron is bent in a circle it radiates synchrotron "light" along a tangent in a narrow cone (opening angle = 1/γ)

Fig. Slide 11

The spectrum

Spectrum is broad and looks the same when normalized to

$$u_c = h\omega_c = \frac{3}{2}\frac{hc\gamma^3}{\rho}$$

Every quantity is normalized to the frequency of a characteristic quantum which is proportional to u_c

> Fig. Slide 12

	Energy	Photon	λ	
	[GeV]	[keV]	[A]	
BESSY-I	0.8	0.64	19.4	UV
HELIOS	0.7	1.5	8.5	UV
SRS	2.0	3.2	3.9	Hard X
ESRF	6.0	20.7	0.60	Hard X
LEP	50.0	88.5	0.14	Hard X
				Fig.

Slide 13

Diffraction

Fig. Slide 14

Diffraction experiment (synch.rad)

Fig. 3 Diffraction diagram from frog semitendinosus muscle Fig.

Diff-phot.pct Diff-diag.pct

E.J.N.Wilson - Introduction to Accelerators III – Applications

A very complex molecule

RNA Polymerase – the structure that enables the code for each protein to be used to make each protein

> Fig. Slide 16

Lithography in practice

AC9.8.95_11(mask).pct

Fig. Slide 17

Brightness (importance of small emittance)

where $dF/d\theta$ is the vertically integrated flux $\sigma_{\gamma} \approx \frac{1}{2\gamma}$

Brightness is measured in :

photons/sec/mm² / mr² / 0.1% bandwidth

Wigglers and undulators enhance this!

Fig.

E.J.N.Wilson - Introduction to Accelerators III - Applications

ISIS

Spallation source (ESS)

Average Beam Power: 2 x 5 MW

Average Neutron Flux :3.1 x 10¹⁴ n/cm2s

Pulse frequency = 16 2/3 Hz

Neutron pulse length = 2 Milliseconds

Mean Power = 5 MW

Target material = mercury

Max. Neutron flux = $1 \times 10^{16} \text{ n/cm}2\text{s}$

Compare with ISIS

Proton energy: 0.800 GeV

Protons per second: $2.5 \times 10^{13} \times 50 \text{ Hz} = 1.3 \times 10^{15}$

Current = Charge/sec:x1.3x 10¹⁵ x 1.6 x 10⁻¹⁹ =0.2 mA

Mean Power = 0.2 mA x 800 MeV = 0.16 MW

Fig.

Slide 20

High temperature superconductor

Crystal structure of the 90K YBa2Cu3O7 superconductor

HgBa2CuO4.Color-PICT

Fig. Slide 21

GSI – Ions galore!

View along the SIS accelerator ring, which can accelerate the ions coming from the UNILAC to 90% of the speed of light.

 $E.J.N.Wilson\ -\ Introduction\ to\ Accelerators\ III-Applications$

510 im

incl. microprobe

Setup for surface treatment of artificial knee joint by low energy ion implantation. Collaboration Aesculap and Technical University Darmstadt

Membranes made with ion-beams

The damage produced by the heavy ions along the track in the material can be used to develop pores. With this technique tracks in many polymers, crystalline insulators, glasses, semi-conductors and recently amorphous metals are etcheable.

Etched ion tracks in polymer foil. The pore density is 10 million per cm². By ion track etching it is possible to produce membranes with track diameter from 10 nm up to 10 μ m and densities from 1 to 10⁹ pores per cm².

Quartz micro machining by control of ion track etch access

fluence= ions per area [ions / cm²]

1 ion/sample-single pore membrane 10⁶...10¹⁰ ions/cm²-etching 10⁹...10¹¹ions/cm² -single track regime 10¹¹ 10¹⁴ions/cm² -overlapping tracks

HYOGO (JPN)- Ion beam medical center

Particle species	p, He and C
Beam energy for p and He [MeV/u]	70 - 230
Beam energy for C [MeV/u]	70 - 320
Beam spill length [ms]	400
Repetition rate for He and C [Hz]	0.5

Beam intensity is typically 10¹⁰ ppp
 The tumor is "painted " with beam
 Depth modulation = energy loss absorber
 Slow extraction must be ripple free.
 E.J.N.Wilson - Introduction to Accelerators III – Applications

Depth in tissue

Lawrence's Cyclotron

Fig. Slide 28

J	PE	Т	P	R	0	D	U	C	T	1	0	N	

Radionuclide	Nuclear Reaction	Chemical Form	Beam Current	Irradiation Time	Yield mCi
C-11	14N(p,a)11C	CO 2	50 µA	30 min	3000
N-13	$16_{O(p,a)}13_{N}$	NH 3	30 µA	30 min	450
0-15	¹⁴ N(d,n) ¹⁵ O	02	50 µA	6 min	1200
F-18	¹⁸ O(p,n) ¹⁸ F	HF	30 µА	60 min	1000

petiso.pct

Energy amplifier

Fig. Carlo.Stlide 30

Inertial confinement

The history of accelerators

Fig.

Need for Accelerators

Why do we need accelerators? (2)

Resolution of "Matter" Microscopes:

Wavelength of Particles (Photon, Electron, Proton, ...): (de Broglie, 1923)

h/p $\lambda =$

 $\left(= 1.2 \text{ fm} / p \text{ [GeV/c]} \right)$

The higher the momentum, the shorter the wavelength, the better the resolution

to Matter:
stein (1905):

$$E = mc^{2} = \frac{m_{o}c^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \gamma m_{o}c^{2}$$

Eins

Energy

Higher energy means we can produce more massive particles When particles approach the speed of light, they get more massive, but not faster

3

W = Energy available in center-of-mass for making new particles

For fixed target : $E_{c.m} \cong \sqrt{2m_T E_B}$

... and we rapidly run out of money trying to gain a factor 10 in c.m. energy

But a storage ring , colliding two beams, gives:

$$E_{c.m.} \cong 2 E_B$$

Problem: Smaller probability that accelerated particles collide "Luminosity" of a collider

$$L = N_1 N_2 \frac{1}{A} \frac{\beta c}{2 \pi R} \approx 10^{29} \dots 10^{34} \, cm^{-2} \, s^{-1}$$

Luminosity

CLIC SCHEME

Summary of lecture: III – Applications – E. Wilson

- Low energy irradiation of material
- Dose and beam power
- Synchrotron light sources (ESRF)
- The cone of synchrotron radiation
- The spectrum
- The scale of things
- Diffraction Lithography
- Brightness
- Spallation source
- GSI Ions Galore!
- HYOGO (JPN)- Ion beam medical center
- Energy amplifier
- Inertial confinement
- The development of accelerators
- Need for higher energy
- Center of mass v. Fixed target
- Luminosity
- CLIC

E.J.N.Wilson - Introduction to Accelerators III - Applications

Fig.