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Contents
The presentation deals with d.c. magnets only.
i) No current or steel:
• Laplace's equation with scalar potential;
• Cylindrical harmonic solutions in two dimensions;

ii) Introduce steel yoke:
• Ideal pole shapes for dipole, quad and sextupole;
• Field harmonics-symmetry restraints and significance;

iii) Introduce current:
• Ampere-turns in dipole, quad and sextupole;
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Contents (cont.)
iv) Magnet geometry:
• Backleg and coil geometry- 'C', 'H' and 'window frame' 

designs;
• Coil economic optimisation-capital/running costs;

v) Field computation and pole optimisation:
• Field computation software-OPERA, TOSCA;
• Design of pole geometry for dipole, quad and sextupole;
• Magnet ends-computation and design;
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Magnets we know about:
Dipoles to bend the beam:

Quadrupoles to focus it:

Sextupoles to correct chromaticity:

We need to establish a 
formal approach to 
describing these magnets.
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But first – nomenclature!
Magnetic Field: (the magneto-motive force produced by electric currents)

symbol is H (as a vector);
units are Amps/metre in S.I units (Oersteds in cgs);

Magnetic Induction or Flux Density: (the density of magnetic flux driven 
through a medium by the magnetic field)

symbol is  B (as a vector);
units are Tesla (Webers/m2 in mks, Gauss in cgs);

Note: induction is frequently referred to as "Magnetic Field".

Permeability of free space:
symbol is µ0 ;
units are Henries/metre;

Permeability (abbreviation of relative permeability):
symbol is µ;
the quantity is dimensionless; 
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i) No Currents - Maxwell’s equations:
∇.B = 0 ;
∇ H = j ;

In the absence of currents: j = 0.

Then we can put: B = - ∇φ

So that: ∇2φ = 0       (Laplace's equation).

Taking the two dimensional case (ie constant in the z 
direction) and solving for cylindrical coordinates (r,θ):

φ = (E+F θ)(G+H ln r) + Σn=1
∞ (Jn r n cos nθ +Kn r n sin nθ

+Ln r -n cos n θ + Mn r -n sin n θ )
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In practical situations:
The scalar potential simplifies to:

φ = Σn (Jn r n cos nθ +Kn r n sin nθ),

with n integral and  Jn,Kn a function of geometry.

Giving components of flux density:

Br = - Σn (n Jn r n-1 cos nθ +nKn r n-1 sin nθ)
Bθ = - Σn (-n Jn r n-1 sin nθ +nKn r n-1 cos nθ) 
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Significance
This  is  an  infinite  series  of  cylindrical  harmonics;  they  
define  the  allowed  distributions  of  B in  2 dimensions  in  
the  absence  of  currents within  the  domain  of  (r,θ).

Distributions  not  given  by  above  are  not  physically  
realisable.

Coefficients  Jn, Kn are determined  by  geometry (iron 
boundaries  or  remote  current  sources).
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Cartesian Coordinates
In Cartesian coordinates, the components are given by:

r
θ

0

Br
Βθ

x

y

Bx = Br cos θ - Bθ sin θ,

By = Br sin θ + Bθ cos θ, 
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Dipole field: n = 1
Cylindrical: Cartesian:
Br = J1 cos θ + K1 sin θ; Bx = J1

Bθ = -J1 sin θ + K1 cos θ; By = K1

φ =J1 r cos θ +K1 r sin θ. φ =J1 x +K1 y

So,  J1 = 0  gives vertical dipole field:

K1 =0  gives  
horizontal  
dipole  field.

B
φ = const.
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Quadrupole field: n = 2
Cylindrical: Cartesian:
Br = 2 J2 r  cos 2θ +2K2 r  sin 2θ; Bx = 2 (J2 x +K2 y)
Bθ = -2J2 r  sin 2θ +2K2 r  cos 2θ; By = 2 (-J2 y +K2 x)
φ =  J2 r 2 cos 2θ +K2 r 2 sin 2θ; φ = J2 (x2 - y2)+2K2 xy

J2 = 0 gives 'normal' or 
‘right’ quadrupole field.

K2 = 0  gives  'skew'  quad  
fields (above  rotated  by  
π/4). 

Lines of flux density

Line of constant

scalar potential
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Sextupole field: n = 3
Cylindrical; Cartesian:
Br = 3 J3r2 cos 3θ +3K3r2 sin 3θ; Bx = 3{J3 (x2-y2)+2K3yx}
Bθ= -3J3 r2 sin 3θ+3K3 r2 cos 3θ; By = 3{-2 J3 xy + K3(x2-y2)}
φ =  J3 r3 cos 3θ +K3 r3 sin 3θ; φ = J3 (x3-3y2x)+K3(3yx2-y3)

Line of constant 
scalar potential

Lines of flux 
density

+C

-C

+C

-C

+C

-C J3 = 0 giving 'normal' or 
‘right’ sextupole field.+C

-C

+C

-C

+C

-C
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Summary; variation of By on x axis
Dipole; constant field:

Quad; linear variation:

Sext.: quadratic variation:

x

By

0
0

By

x

x

By
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Alternative notification (USA)

  
B (x) =  B ρ 

k n  xn

n!n =0

∞
∑

magnet strengths are specified by the value of kn; 
(normalised to the beam rigidity);

order n of k is different to the 'standard' notation:

dipole is n = 0;
quad is n = 1; etc.

k has units:
k0 (dipole) m-1;
k1 (quadrupole) m-2; etc.
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ii) Introducing Iron Yokes
What is the ideal pole shape?
•Flux is normal to a ferromagnetic surface with infinite µ:

•Flux is normal to lines of scalar potential, (B = - ∇φ);
•So the lines of scalar potential are the ideal pole shapes!

(but these are infinitely long!)

curl H = 0

therefore ∫ H.ds = 0;

in steel H = 0;

therefore parallel H air = 0

therefore B is normal to surface.

µ = ∞

µ = 0
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Equations for the ideal pole
Equations for Ideal (infinite) poles;
(Jn = 0) for normal (ie not skew) fields:
Dipole:

y= ± g/2;
(g is interpole gap).
Quadrupole:

xy=±R2/2;
Sextupole:

3x2y - y3 = ±R3;

R
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Combined function magnets
'Combined Function Magnets' - usually dipole and quadrupole 
field combined:

A quadrupole magnet with
physical centre shifted from
magnetic centre.

Characterised by 'field index' n,
+ve or -ve depending
on direction of gradient;
do not confuse with harmonic n!

B

n = - ρ
Β 0

 

 

 
 

 

 

 
 

∂B
∂x

 

 
  

 

 
   ,

ρ is radius of curvature of the 
beam;

Bo is central dipole field 
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Pole equations for c.f. magnet
If physical and magnetic centres are separated by X0

Then B0 = ∂B
∂x

 

 
  

 

 
  X0;

therefore                                    X0 = − ρ / n;

in a quadrupole x' y = ±R2 / 2
where x'  is measured from the true quad centre;

Put                                             x' =  x +   X0

So pole equation is                     y = ± R2

2
n
ρ

1 − nx
ρ

 

 
  

 

 
  

- 1

or y = ±g 1− nx
ρ

 

 
  

 

 
  

- 1

 where g is the half gap at the physical centre of the magnet
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The practical Pole
Practically,  poles  are  finite,  introducing  errors; 
these appear as higher harmonics which degrade the field 
distribution.
However,  the  iron  geometries  have  certain  symmetries  
that  restrict the  nature  of  these  errors.

Dipole: Quadrupole:
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Possible symmetries:
Lines  of  symmetry:

Dipole: Quad
Pole  orientation y = 0; x = 0;  y = 0
determines whether pole
is normal or skew.

Additional symmetry x = 0; y = ± x
imposed by pole edges.

The additional constraints imposed  by  the  symmetrical  pole  
edges  limits  the  values  of  n  that  have  non  zero  coefficients 
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Dipole symmetries

+φ

-φ

Type Symmetry Constraint

Pole orientation φ(θ) = -φ(-θ) all  Jn = 0;

Pole edges φ(θ) = φ(π -θ) Kn non-zero 
only  for:
n = 1, 3, 5, etc;

So, for a fully symmetric dipole, only 6, 10, 14 etc pole errors
can be present.

+φ +φ
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Quadrupole symmetries

Type Symmetry Constraint

Pole orientation φ(θ) = -φ( -θ) All  Jn = 0;

φ(π) = -φ(π -θ)        Kn = 0 all odd n; 

Pole edges φ(θ) =  φ(π/2 -θ)     Kn non-zero 
only  for:
n = 2, 6, 10, etc;

So, a fully symmetric quadrupole, only 12, 20, 28 etc pole 
errors can be present.
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Sextupole symmetries

Type Symmetry Constraint

Pole orientation φ(θ) = -φ( -θ) All  Jn = 0;
φ(θ) = -φ(2π/3 - θ) Kn = 0  for all n 
φ(θ) = -φ(4π/3 - θ) not multiples of 3;

Pole edges φ(θ) = φ(π/3 - θ) Kn non-zero only  
for: n = 3, 9, 15, etc. 

So, a fully symmetric sextupole, only 18, 30, 42 etc pole errors
can be present.
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iii) Introduction of currents
Now for   j ≠ 0 ∇ H = j ; 

To expand, use Stoke’s Theorum:
for  any vector  V and a  closed 
curve s :

∫V.ds =∫∫ curl V.dS

Apply  this  to:      curl H = j ;

dS

ds
V

then  in a  magnetic  circuit:

∫ H.ds = N I;

N I  (Ampere-turns) is  total  current cutting  S
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Excitation current in a dipole

µ >> 

g

λ

1

NI/2

NI/2

B  is  approx  constant  round the loop  
made  up  of  λ and  g, (but  see  below);

But  in  iron, µ>>1,
and  Hiron = Hair /µ ;

So
Bair = µ0 NI / (g + λ/µ);

g,  and  λ/µ are  the  'reluctance'  of  the  gap  and  iron. 

Approximation  ignoring  iron  reluctance (λ/µ << g ):

NI = B g /µ0
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Relative permeability of low silicon steel
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Excitation current in quad & sextupole
For  quadrupoles  and  sextupoles,  the required  excitation  can 
be  calculated  by  considering  fields  and  gap  at  large  x. For 
example:                 Quadrupole:

y

x B

Pole  equation:        xy = R2 /2
On x axes BY = gx;
where  g  is gradient  (T/m).

At  large  x (to  give  vertical  
lines  of  B):

N I = (gx) ( R2 /2x)/µ0
ie

N I = g R2 /2 µ0 (per pole).

The same method for a 
Sextupole,  

( coefficient  gS,),   gives:

N I = gS R3/3 µ0 (per pole)
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General solution for magnets order n
In air (remote currents! ), B = µ0 H 

B = - ∇φ
Integrating over a limited path
(not circular) in air: N I = (φ1 – φ2)/µo
φ1, φ2 are the scalar potentials at two points in air.
Define φ = 0 at magnet centre;
then potential at the pole is:

µo NI

Apply the general equations for magnetic
field harmonic order n for non-skew
magnets (all Jn = 0) giving:

N I = (1/n) (1/µ0) {Br/R (n-1)} R n
Where:

NI is excitation per pole;
R is the inscribed radius (or half gap in a dipole);
term in brackets {} is magnet strength in T/m (n-1). 

y

φ = 0

φ = µ0 NI
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iv) Magnet geometry
Dipoles can be ‘C core’ ‘H core’ or ‘Window frame’
''C' Core:
Advantages:

Easy access;
Classic design;

Disadvantages:
Pole shims needed;
Asymmetric (small);
Less rigid; Shim

The ‘shim’ is a small, additional piece of ferro-magnetic material added 
on each side of the two poles – it compensates for the finite cut-off of 
the pole, and is optimised to reduce the 6, 10, 14...... pole error 
harmonics.
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A typical ‘C’ cored Dipole

Cross section of 
the Diamond 
storage ring 
dipole.
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H core and window-frame magnets

‘H core’:
Advantages:

Symmetric;
More rigid;

Disadvantages:
Still needs shims;
Access  problems.

''Window Frame'
Advantages:

High quality field;
No pole shim;
Symmetric & rigid;

Disadvantages:
Major access problems;
Insulation thickness 



Neil Marks; DLS/CCLRC CAS, Baden bei Wien, September 2004

‘Diamond’ storage 
ring quadrupole 
cross section.

The yoke support 
pieces in the 
horizontal plane 
need to provide 
space for beam-
lines and are not 
ferro-magnetic

An open-sided Quadrupole.
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Coil geometry

Standard  design  is rectangular 
copper (or  aluminium) 
conductor, with  cooling  water 
tube. Insulation  is  glass cloth 
and epoxy  resin.

Amp-turns (NI)  are determined,  
but  total copper  area  (Acopper)  
and  number  of  turns  (N)  are 
two degrees of freedom and need  
to  be  decided.

Current  density:
j = NI/Acopper
Optimum  j  
determined  from  
economic criteria. 



Neil Marks; DLS/CCLRC CAS, Baden bei Wien, September 2004

Current density - optimisation
Advantages of low j:
• lower power loss – power bill is decreased;
• lower power loss – power converter size is decreased;
• less heat dissipated into magnet tunnel.

Advantages of high j:
• smaller coils;
• lower capital cost;
• smaller magnets.

Chosen value of j is an
optimisation of magnet 
capital against power costs.

0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Current density j

Li
fe

tim
e 

co
st

running

capital

total
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Number of turns, N
The  value  of  number of turns (N) is chosen to match power 
supply and interconnection  impedances.

Factors  determining  choice  of  N:
Large N (low  current) Small N (high  current) 
Small, neat  terminals. Large, bulky terminals 

Thin interconnections-hence low Thick, expensive connections.
cost and flexible.

More  insulation layers in coil, High  percentage  of  copper  in
hence  larger coil  volume and coil  volume. More  efficient use
increased assembly  costs. of  space  available 

High  voltage  power supply High  current  power supply.
-safety  problems. -greater losses.
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Examples of typical turns/current
From the Diamond 3 GeV synchrotron source:
Dipole:

N  (per magnet): 40;
I max 1500 A;
Volts (circuit): 500 V.

Quadrupole:
N (per pole) 54;
I max 200 A;
Volts (per magnet): 25 V.

Sextupole:
N (per pole) 48;
I max 100 A;
Volts (per magnet) 25 V.
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v)  Pole design
To  compensate  for  the  non-infinite  pole, shims are added at the 
pole edges. The area and shape of  the shims determine the 
amplitude of error harmonics which will be present.

A

A

Dipole: Quadrupole:

The designer optimises the pole 
by ‘predicting’ the field 
resulting from a given pole 
geometry and then adjusting it 
to give the required quality.

When high fields are present,
chamfer angles must be small, and 
tapering of poles may be  necessary 
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Diamond s.r dipole
Pole profile, showing shim and Rogowski roll-off for 
Diamond 1.4 T dipole.:
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Computing magnetic fields
Advanced 2 D and 3 D ‘finite element’ codes predicting field 
distributions between poles and at the magnet ends give 
accurate predictions of the strength of the magnet:

∫ B. dl for dipole;
∫ g. dl for quadrupole.

For a dipole, very small variations must be examined;
For a quadrupole or sextupole the field variation is an inadequate 
criterion; the differentials must be examined.

Judgement of field quality, plot:

Dipole: (By (x) - By (0))/BY (0)
Quad: dBy (x)/dx (first differences);
Sextupoles: d2By(x)/dx2 (second differences)
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Computational methods
Pre computers, numerical methods and other maths methods 
were used to predict field distributions.
Still used - ‘conformal transformations’; mapping between complex planes 
representing the magnet geometry and a configuration that is analytic. The 
study of this is beyond the scope of the present course. 

Computer codes are now used; eg the Vector Fields codes -
‘OPERA 2D’ and ‘TOSCA’ (3D) – as presented.
These have:
•finite elements with variable triangular mesh;
•multiple iterations to simulate steel non-linearity;
•extensive pre and post processors;
•compatibility with many platforms and P.C. o.s.
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2 D Dipole field homogeneity on x axis

Diamond s.r. dipole: ∆B/B = {By(x)- B(0,0)}/B(0,0); 
typically ± 1:104 within the ‘good field region’ of -12mm ≤ x ≤ +12 mm..
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2 D Flux density distribution in a dipole.



Neil Marks; DLS/CCLRC CAS, Baden bei Wien, September 2004

2 D Dipole field homogeneity in gap
Transverse 
(x,y) plane in 
Diamond s.r. 
dipole;

contours are 
±0.01%

required good 
field region:
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3D model of Diamond dipole.
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‘Soleil’ dipole end.
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2 D Assessment of quadrupole gradient quality

-0.1

-0.05
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 d
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)
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Diamond 
WM 
quadrupole:

graph is 
percentage
variation in 
dBy/dx vs x 
at different 
values of y.

Gradient 
quality is to 
be ± 0.1 % or 
better to x = 
36 mm.
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3D finite element model of Soleil quadrupole.
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Magnet Ends
It is necessary to terminate the magnet in a controlled way:
•to define the length (strength);
•to prevent saturation in a sharp corner (see diagram);
•to maintain length constant with x, y;
•to prevent flux entering normal

to lamination (ac). 

The end of the magnet is therefore
'chamfered' to give increasing gap
(or inscribed radius) and lower fields 
as the end is approached 
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Classical end solution
The 'Rogowski' roll-off:
Equation:

y = g/2 +(g/π) exp ((πx/g)-1);
g/2 is dipole half gap;
y = 0 is centre line of gap.

10-1-2
0

1

2

This profile provides the 
maximum rate of 
increase in gap with a 
monotonic decrease in 
flux density at the 
surface ie no saturation
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Calculation of end field distribution
Calculation of end effects in longitudinal plane using 2D codes,
with correct end geometry (including coil), but 'idealised' return 
yoke:

+

-

This provides a reasonable estimate of the distribution in the 
third plane using a 2D code. BUT it is not as accurate as 
using a full 3D code.


