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Multi-Particle Effects: Instabilities
Karlheinz SCHINDL/CERN-AB

Longitudinal Instabilities
Basics
“Negative Mass” Instability
Stability Diagram and Landau Damping 
Longitudinal Stability Criterion
Impedance (resonator)
Line spectra: single particle, single bunch
Bunched  beam longitudinal instability: 

- one bunch; many bunches
Higher-order coupled-bunch modes
Microwave instability
Cures

Transverse Instabilities
Fields and forces
Transverse coupling impedances
Spectrum of beam signals
Instability of un-bunched beam
Bunched beam: Head-Tail instability

- zero and non-zero chromaticity
Many bunches – long and short
Resistive wall instability
Transverse wake fields
Cures

Further Reading:
A. Hofmann, Single beam collective phenomena – longitudinal, CAS Erice, 1976, CERN 77-13, p. 139
J. Gareyte, Observation and correction of instabilities in circular accelerators, CERN SL/91-09 (AP), Joint US-CERN 

Accelerator School, Hilton Head Island, USA, 1990
F. Pedersen, Multi-bunch instabilities, CERN PS 93-36 (RF), Joint US-CERN Accelerator School, Benaldamena, Spain 1992
A.W. Chao, Physics of collective beam instabilities in high energy accelerators, John Wiley&Sons, New York, 1993
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Longitudinal Instabilities – Basic Mechanism
Wall current Iw due to circulating bunch
Vacuum pipe not smooth, Iw sees an
IMPEDANCE (resistive, capacitive, 
inductive)

Impedance Z = Zr + iZi
Induced voltage V ~ Iw Z = –IB Z

V acts back on the beam INSTABILITIES  INTENSITY  DEPENDENT

General Scheme to investigate instabilities

Step 1: Start with a nominal particle distribution (i.e. longitudinal position, density)
Step 2: Compute fields and wall currents induced by a small perturbation of this

nominal distribution, and determine forces acting back on the beam
Step 3: Calculate change of distribution due to these forces

INCREASED?  INSTABILITY
DECREASED?  STABILITY

If Initial Small Perturbation
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“Negative Mass” Instability - Qualitative

Un-bunched (=coasting) beam in a 
proton/ion ring, travels around ring 
with angular frequency ω0
Line density λ(s) [particles/m] 
is modulated around the synchrotron

Line density modulation
“mode” with n=8 humps

Zooming in one modulation

WILL THE HUMPS INCREASE
OR ERODE?

The self-force F (proportional to – ∂λ/∂s)
Increases energy of particles in B

Decreases energy of particles in A

γ <  γt: if ∆E ↑ then ∆ω0 ↑ A and B move away from the
hump eroding the mountain STABLE

γ  > γt: if ∆E ↑ then ∆ω0 ↓ A and B move towards the 
hump enhancing the mountain

UNSTABLE
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Negative Mass Instability: Fields Created by Beam
For small modulations of λ(s)
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longitudinal “space 
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“capacitive”

Field due to 
inductive wall:
“inductive”
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Negative Mass Instability: Field Acting Back on Beam
λ(s) has n humps and rotates with Ω near but not exactly nω0

λ = λ0 + λ1ei(nΘ–Ωt) , I + I0 + I1ei(nΘ–Ωt) instantaneous density λ1 and current I1

Us –I1 ei(nΘ–Ωt) × Z (Ω)

voltage per turn (small) AC component longitudinal impedance

= Us perturbs the motion of 
the pattern and leads to a 
complex frequency shift 
∆Ω = ∆Ωr+i∆Ωi

Ω = nω0 + ∆Ω slightly perturbed frequency

A SHORTCUT TO CALCULATE ∆Ω
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synchrotron oscillations in a stationary bucket

“m”
V0 …voltage per turn
f0 ….revolution frequency
η….1/γ2 – 1/γt

2

E0…particle rest energy
h….harmonic number.
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ωs
2 synchrotron frequency

This “mass” becomes 
negative above 
transition (η<0) and 
the motion unstable
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Negative Mass Instability: Shortcut to Compute ∆Ω
Replace ωs by ∆Ω
Replace hV0 by beam-induced voltage i n Z I0 with Z = Zr + i Zi complex impedance

Complex Frequency shift
required to sustain “self-
consistent” modulation

(∆Ω)2 (Zr + iZi)= Ω− nω0( )2 = −i
eηω0

2nI0
2πβ2E0γ
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Zr = 0: Vacuum pipe ideal conductor
From Us = –I1ei(nΘ–Ωt)Z and Z0 = 1/ε0c = 377 Ω

Zi γ < γt (η > 0) γ > γt (η < 0) (m < 0) 
> 0 (capacitive) ∆Ωi = 0 STABLE ∆Ωi ≠ 0 UNSTABLE 
< 0 (inductive) ∆Ωi ≠ 0 UNSTABLE ∆Ωi = 0 STABLE 

 

)t)∆Ω(nωi(nθt∆Ω
10

r0i eeIIΘ)I(t, −−+=
growth or
damping frequency shift

Instantaneous current with
∆Ω = ∆Ωr + i∆Ωi

Zr ≠ 0: realistic 
resistive vacuum pipe

∆Ωi ≠ 0 
always one unstable
solution

Lnω
β2γ
Zng

02
00 −=Zi

space charge 
impedance

inductive 
impedance



Stability Diagram
Relates (complex) growth rate ∆Ω to (complex) impedance Z

(∆Ω)2 = –i ξ (Zr + iZi) = ξ (Zi–iZr) = (∆Ωr + i∆Ωi)2

Plot contours ∆Ωi = const (= equal growth rate) into Zr, Zi plane. Equating real and
imaginary  parts yields parabolae for ∆Ωi = const 22

iiir /ξ∆Ω/ξZ2∆Z +Ω=

Stability Diagram
For any Zr ≠ 0 the unbunched beam is 
subject to the negative mass instability 
and is unstable even at low intensity!
Is there a way out? 

YES: LANDAU DAMPING
In real machines, the beam has an 
energy spread, so individual particles 
move with different oscillation 
frequencies around the ring the 
coherent motion becomes confused and 
may collapse faster than the rise time 
of the instability
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Landau Damping - Basic Idea
N particles (oscillators), each resonating at a 
frequency between Ω1 and Ω2  with a density g(Ω)

g(Ω) dΩ = 1
Ω1

Ω2
∫ normalization

Response X of an individual oscillator 
with frequency Ω to an external 
excitation with ω)
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S =
N

2Ω0

i dg Ω( )
dΩ

Ω − ω
dΩ ⋅eiωt

Ω1

Ω2
∫

Coherent response of the beam obtained by summing 
up the single-particle responses of the n oscillators

External excitation 
is outside the 
frequency range of 
the oscillators

External excitation is 
inside the frequency 
range of the oscillators 
The integral has  a 
pole at Ω = ω

( )( ωΩωΩ
1

ωΩ
1X 22 +−

=
−

= eiωt eiωt

∼2Ω0

No damping Landau damping



Landau Damping and Stability Diagram
The evaluation of the integral with 
the pole at Ω = ω shows that Landau 
Damping only works if coherent 
frequency of the external excitation
lies inside the frequency spread of 
the oscillators. The stability diagram
has then a stable region!

Stability Diagram with 
Landau Damping

KEIL-SCHNELL CRITERION

( )
0

222
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I
p∆p

e
ηγβcm

F
n
Z

≤The form of the “bottle” depends on g(Ω); 
for most distributions, a circle can be 
inscribed, giving a handy approximation 
for the longitudinal stability limit of un-
bunched beams
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Coasting Beam Longitudinal Instability excited by Narrow-
Band Resonator: Example at CERN PS (LHC Beam)

          

∆f ~ ∆p/p ∆f ~ ∆p/p
Tim

e (m
s )

A narrow-band resonator (114 MHz cavity) drives a longitudinal coasting beam 
instability if the gap short circuit is open (left). Several neighbouring modes are 
driven, resulting in increased momentum spread.
Horizontal: ∆f proportional to ∆p/p ( “Schottky” scan on a spectrum analyser)
Vertical: time moving downwards, total 180 ms. 

Gap open
Z High
Beam

Unstable

Short-
circuited
Z Low
Beam
stable

beam 
debunching

beam 
debunched

Blow-up: 
Large ∆p/p

180 m
s

No blow-up: 
small ∆p/p
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Impedance of a Resonator
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Differential equation of RLC circuit (current I represents 
the beam)

Solution: damped oscillation with α = 1/τ = ωr/2Q

HOW TO COMPUTE
IMPEDANCE?

Excite RLC circuit with I = I0 eiωt, (−∞ < ω < ∞)
Look for solutions V(t) = V0 eiωt in the differential equation:

−ω2V0 eiωt + i
ωωr

Q
V0 eiωt + ωr

2V0 eiωt = i
ω rωR

Q
I0 eiωt

( )

rωω

2
rω2ωiQ1

1R
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0V
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−

+

==⇒
Impedance of Longitudinal Resonator

V0 is complex since in general not in 
phase with exciting current I0

Z is complex and a function of ω
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Impedance of a Resonator

Z(ω) = Zr (ω) + iZi (ω) = R
1− iQ ω2 − ω r

2

ωωr

1+ Q
ω2 − ω r

2

ωωr

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

Longitudinal impedance 
of a resonator with
resonance frequency ωr

Zr(ω) = Zr(-ω) (even)
Zi(ω) = − Zi(-ω) (odd)

Z(ω) ≈ Rs

1− i2Q ∆ω
ω r

1+ 2Q
∆ω
ω r

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

Impedance of a narrow-band (“high-Q”) Cavity
with ∆ω = nω0−ωr,  RS = “shunt impedance”
The excitation signal in such a cavity decays slowly: the 
field induced by the beam is memorized for many turns
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Longitudinal Spectrum – Single Particle and Bunch
current monitor signal Spectrum

SINGLE PARTICLE
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σω∼  2π/σb: the shorter the 
bunch, the wider the spectrum

SPECTRUM AND IMPEDANCE
Narrow-band impedance Z(ω)
driving a single mode (here 7 ω0)



Single Bunch + Resonator: “Robinson” Instability
Bunch sees resonator impedance at ωr ≅ ω0

A single bunch rotates 
in longitudinal phase 

plane with ωs: 
its phase φ and energy 
∆E also vary with ωs

“Dipole” mode or 
“Rigid Bunch” mode

Whenever ∆E>0:
• ω increases (below transition)
• sees larger real impedance R+
•more energy taken from beam

STABILIZATION

Whenever ∆E>0:
• ω decreases (above transition)
• sees smaller real impedance R+
• less energy taken from beam

INSTABILITY

ω < ωr

ω > ωr
UNSTABLE STABLE
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Longitudinal Instabilities with Many Bunches
Fields induced in resonator remain long enough to influence subsequent bunches
Assume M = 4 bunches performing synchrotron oscillations

Coupled-Bunch 
Modes n

Four possible phase shifts between four bunches

M bunches: phase shift of coupled-bunch mode n: 2π
n
M

, 0 ≤ n ≤ M −1⇒ M modes
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Coupled-Bunch Modes and Stability
M = 4 bunches, resonator tuned at ω0

Four stationary buckets (no synchrotron oscillations)
Voltages induced by bunches 2 and 4 cancel
Voltages induced by bunches 1 and 3 cancel

NO EFFECT

Voltages induced by bunches 2 and 4 cancel, but
bunches 1 and 3 induce a net voltage
Bunch 2 accelerated, bunch 4 decelerated
Synchrotron oscillation amplitude increases

UNSTABLE

Voltages induced by bunches 2 and 4 cancel, but
bunches 1 and 3 induce a net voltage
Bunch 2 accelerated, 4 decelerated
Synchrotron oscillation amplitude decreases

STABLE

Same as n=1
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Coupled Bunch Modes, Dipole & Higher Order

Dipole mode Quadrupole Sextupole Octupole

Mountain-range 
display during one 
synchrotron 
oscillation period 
(0.5 ms)

Signals 
superimposed

Mode pattern 
in longitudinal 
phase plane

m = 1                     m = 2                       m = 3                       m = 4

∆E

φ

Dipole (m=1) and higher-order (m=2,3,4) modes in a synchrotron with 5 bunches
Two adjacent bunches shown. Note phase shifts between adjacent bunches
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Longitudinal Microwave Instability
• High-frequency density modulation along the bunch
• wave length « bunch length (frequencies 0.1-1 GHz)
• Fast growth rates – even leptons concerned
• Generated by “BROAD-BAND” IMPEDANCE

Z (ω ) = R s

1 − iQ ω 2 − ω r
2

ωω r

1 + Q
ω 2 − ω r
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Q ≈ 1

ω r ≈ 1 GHz

All elements in a ring are “lumped” into a 
low-Q resonator yielding the impedance
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n
and with (p. 11) Lω

R
Q

r
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0
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Lω
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Z

= “Impedance”  of a 
synchrotron in Ω

•This inductive impedance is caused mainly by 
discontinuities in the beam pipe 

• If high, the machine is prone to instabilities
• Typically 20…50 Ω for old machines
• < 1 Ω for modern synchrotrons
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Microwave Instability – Stability Limit
• The Broad-Band Impedance with Q=1 has little memory

No coupling between consecutive bunches
Microwave instability is a single bunch effect 

• leading to longitudinal bunch blow-up
• In lepton machines also called “turbulent bunch lengthening”

STABILITY LIMIT: Apply Keil-Schnell criterion for unbunched beams to 
instantaneous current and momentum spread

KEIL-SCHNELL-BOUSSARD 
CRITERION
protons: F ~ 0.65         leptons: F ~ 8

( )
instant.

222
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∆p/p

e
ηγβcm
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Z

⎥
⎦

⎤
⎢
⎣

⎡
≤

For both bunch population and 
longitudinal emittance equal, 
short bunches are more stable
than long ones
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Longitudinal Instabilities - Cures

Robinson Instability, generated by main RF cavities: 
Tune cavity resonance frequency ωr
relative to bunch frequency hω0

Cavities “Parasitic” Modes are damped by “Higher Order Mode Dampers”(HOM): the
unwanted mode is picked up by an antenna and sent to a damping resistor.

Unwanted Resonators in beam pipe: RF shield
protects the beam mimicking a smooth beam pipe

Microwave Instabilities: Reduce Broad-Band
Impedance by smooth changes in beam pipe cross
section and shielding cavity-like objects. Large ∆p/p
helpful (Landau damping) but costly in RF voltage.

Feedback systems: The beam phase or amplitude deviation is measured with a
synchronous detector and corrected in an accelerating gap covering the bandwidth

In-phase (n=0) dipole mode tackled by “phase loop” locking beam phase to RF phase
Coupled-bunch (n≠0) instabilities are controlled by feedback loops either tackling

each of M bunches or each mode n (out of M) individually; bandwidth ~ ½ Mω0
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for γ > γτ hω0 > ωr



Transverse Beam Instabilities – Fields and Forces
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δ...displacement of beam 
in y oscillating with eiωt

To sustain the 
differential wall current 
Iw a longitudinal electric 
field Ez varying across 
the aperture is required

Ez = E0(y/b) eiωt in the 
median plane x = 0
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∂
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Phase-shifted with respect 
to exciting beam oscillation

From one gets

t=0, excitation by displaced beam                       t = (1/4) (2π/ω), deflection



Transverse Coupling Impedance

( )
δIβ

ds]BvE[
iωZ t

T
∫ ×+

=

rrr
Deflecting field integrated around ring
Dipole moment of exciting current= [Ω/m]

phase shift between dipole 
moment Iδ and deflecting field Transverse Impedance ZT vs. 

Longitudinal Impedance ZL
Relation between ZT and ZL
(ZL longitudinal impedance called 
Z so far), for a 
resistive round pipe:

ZL ZT

unit Ω Ω/m

Symmetry real part even odd

Symmetry imaginary part odd even

Orders of magnitude for 
synchrotrons

~ Ω MΩ/m

ZT(ω) ≅
2c
b2

ZL
ω

Handy approximate 
relation between 
ZT and ZL 

K. Schindl CAS Baden Austria Multi-Particle Effects: Instabilities 20.9.2004            22/38



Transverse and Longitudinal Impedances
ZL ZT

Resonator-type object
Fields and Forces

Resonator-type object
Impedance

Resistive Wall 
R….machine radius
ρ….vacuum chamber resistivity
δ….wall thickness

δ
ρ

b
R)(ZRe L =

independent of ω
Re (ZT ) =

2cR
ωb3

ρ
δ

(low ω)

Broad-Band (with Q=1)
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Transverse Beam Signals – Time and Frequency
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Spectrum
• constant amplitude
• lines at (n+Q)ω0, n any integer

Single particle on 
central orbit –
longitudinal signal
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Example: Q = 2.25
(q = 0.25)

Position monitor 
signal for q ~ 0.1

fractional tune

Spectrum

( ) ( )[ ] φtωQncos
2π
ωŷe
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Transverse Instabilities – Unbunched Beam
MODE: particles are arranged around the synchrotron 
with a strict correlation between transverse particle 
positions. 
The mode shown is n=4, a snapshot at t=0.
A single particle always rotates with revolution 
frequency ω0 but the pattern n rotates with ωn ≠ ω0

n < -Q -Q < n < 0 n > 0

Rotation frequency 
of mode pattern

3

Pattern     slower than backwards          faster than
moves          particle particle

0n ω
n
Q1ω ⎟

⎠
⎞

⎜
⎝
⎛ +=

Slow wave Backwards wave Fast wave
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Unbunched Beam – Transverse Growth Rate
Only one mode n (one single line) grows, so only ZT around frequency (Q + n)ω0 relevant        
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π rrr

Assume e                  
constant around the 
ring for a given y 

A particle’s betatron
amplitude y(t)
satisfies

With ω0R=βc and
γm0=E/c2
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oscillation changed to
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∆Ω = i
cZTI

4πQE / e
Transverse growth rate, un-bunched 
beam, ZT constant around the ring

y(t) = yn ei[(Qω0 + ∆Ω)t – nθ0]
Unstable if Im(∆Ω) < 0

Re [ZT((Q+n)ω0)] < 0
(Q+n) < 0  slow waves!
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∆Ω2QωωQ 0
2
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For unbunched beam, only slow wave unstable (applies also for bunched beam)
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Transverse Instabilities – Bunched Beams
Bunch shape observed 
with current monitor

ZERO CHROMATICITY

0
p

dp
Q
dQξ ==All particles perform 

synchrotron 
oscillations – their 
energy changes with 
frequency ωs

All particles have same 
betatron tune Q – even with 
changing energies

RIGID BUNCH MOTION (m=0) [A. SESSLER ~1960]

All particles in the bunch start at 
t=0 with same betatron phase. 
Although synchrotron motion 
sweeps them back and forth and 
changes their energy, they all 
oscillate in phase

transverse position y(τ)∗current I(τ) = position monitor signal
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Transverse Instabilities – Head-Tail Modes

Arrange initial betatron phases so as to have 
dipole moments up near the head of the bunch

down near the tail
Mode pattern described by eiψ in longitudinal 
phase plane

Head-Tail Mode 
m=1

Head-Tail Mode m=2

• 2 nodes
• pattern described by ei2ψ

• pattern rotating with 2ωs

On a slower timescale (~ms): the pattern rotates with ωs

Initial condition 
(as above)

ups and downs 
superimposed:

signal = 0

ups and downs 
exchange places
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Head-Tail Modes with Non-Zero Chromaticity

⎥
⎦

⎤
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0
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γ
1ηγγ

0,
pdp
QdQξ

22
t

t

ξ≠0: Q varies along the 
synchrotron orbits

In the sketch, one assumes

χk….betatron phase slip after k machine turns
χ….. betatron phase slip between head and tail
T0…..revolution time

…..half bunch length

The pattern (“mode”) can be kept 
stationary if the particles’ betatron
phases are arranged as in the figure

τ̂

τ̂2Qω
η
ξχ 0 ×=Total phase shift

between head and tail
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Head-Tail Phase Shift Changes Bunch Spectrum
ξ=0 (χ=0) ξ≠0 (χ≠0) Example: Mode m=0
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The shorter the 
bunch length , the 
larger the width of 
the spectrum

τ̂

The wiggly signal passes through 
a position monitor which sees
• during bunch passage time 2
• a phase shift of χ radians
• the monitor (or an impedance)
“sees” an additional frequency

τ̂

0ξ Qω
η
ξω =Chromaticity 

Frequency ωξ

 η ξ ωξ 
γ < γt < 0 > 0 < 0 

  < 0 > 0 
γ > γt > 0 > 0 > 0 

  < 0 < 0 
 

Head-tail mechanism
discovered by 
C. Pellegrini, M. Sands 
end 60ies

“Standard model”
F.Sacherer mid-70ies

ωξ = 0



Transverse Instabilities – Many Bunches

Transverse positions of 
bunches arranged to form a 
pattern of n waves around 
the synchrotron

Coupled-bunch mode n
With M bunches, bunch-to-
bunch betatron phase shift 
2πn/M

short bunches                          long bunches

• n=2 (waves), M=16 (bunches)
• bunch-to-bunch betatron
phase shift π/4

• Head-tail phase shift small
• behaves like coasting beam

• n=2, M=8
• bunch-to-bunch betatron
phase shift π/2

• Head-tail phase shift χ large
• can only be sustained with a 
certain value χ≠0

Spectrum for 
• M=4 bunches
• m=0 nodes within the bunch
• q = 0.25
• coupled-bunch modes n=0,1,2,3
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Bunched Beam Transverse Stability vs. Impedance
Narrow-Band Resonator
• only two spectral lines 
contribute to the sum

• Fields stored long enough
to act on subsequent
bunches during several turns

Reminder: Re[ZT(ω)] = – Re[ZT(−ω)]

ωξ>0                                              ωξ<0
Σ Re[ZT] d0

2 > 0 stable           Σ Re[ZT] d0
2 < 0 unstable

Broad-Band Resonator
• extends to ~GHz
• thus spectral lines very dense
• spectrum envelopes d0, d1, d2
for modes m=0, m=1, m=2 shown

• Quality factor Q low fields
not stored long enough to
influence subsequent bunches

Σ Re[ZT] d0
2 > 0 stable       Σ Re[ZT] d0

2 < 0 unstable

For any “normal” 
transverse impedance

γ < γt:  set ξ < 0 (ωξ > 0) to stabilize beam
γ > γt:  set ξ > 0 (ωξ > 0) to stabilize beam
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Resistive Wall Transverse Instability

Re(ZT) =
2cR
ωb3

ρ
δ

(lowω)

not a “normal” transverse impedance
dominant line at Re(ZT) most negative
at very low frequency
dominant mode normally m=0 but cannot be 
stabilized by  setting ωξ > 0
setting Q  above an integer (q < 0.5) 

puts dominant line near the origin but at 
Re(ZT) > 0 thus stabilizing the beam

ρ...resistivity of beam pipe
δ…wall thickness (low frequency) 

For the resistive wall 
impedance, fractional 
tune q < 0.5 preferable 
(A.Sessler 60ies)

Further increasing ωξ (by varying ξ with sextupoles) 
may drive the hump of m=1, 2 etc. onto this dominant 
line, thus switching from one mode to the next. 
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Horizontal Head-Tail Instabilities in CERN PS

  

  

m=4, 5

m=6, 7

m=8, 10

20 ns/div

A single bunch with ~1012 protons 
and ~150 ns length on the 1.4 GeV
injection plateau in the CERN PS 
(below transition energy)

Head-tail mode numbers m=4,…,9
are generated by changing 
horizontal chromaticity ξh from 
–0.5 (m=4) to –1.3 (m=10). The 
natural chromaticity, ξh= -0.9, 
yields m=6 (6 nodes). For all 
pictures, ωξ > 0, which normally
stabilizes the beam, but not in this 
case.

The impedance responsible for 
this horizontal instability is the 
resistive wall impedance

Courtesy E. Metral/CERN
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Transverse Wake Fields
Instead of treating instability dynamics in the frequency domain as done so far, 
one can do it in the time domain by using “Wake Fields”

What is a Wake Field?
Point charge q1 passes through a resonator with a transverse displacement δ. 
The induced Wake field W will act on the subsequent charge q2. 

RLC-circuit (p. 11)

W = W1e-αt sin Sωrt
with
α = ωr/(2Q)
S = (1 – Q2/4)1/2

The Wake Field concept is very useful for impedances with short memory where 
the fields do not act on subsequent bunches but only on particles within the same 
bunch (single-bunch effects). Example: broad-band impedance (low-Q resonator)
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Transverse Wake Fields – A Simple Model
Approximate bunch by just two superparticles
“head” (1) and “tail” (2) with Ne/2 charges each 

Model by A. Chao

f = e
Ne
2

W1δIf head is displaced by δ, force on particle in 
tail is

Both head (y1) and tail (y2) oscillate with 
same betatron frequency ωβ

tδcosωy β1 =

1
0

1
2

0
2

2
β2 y

γ2m
WNe

γm
fyωy ==+&&

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=⇒ ttsinω

γm4ω
WNe

tcosωδy β
0β

1
2

β2

same 
frequency

Excitation on right-hand side has same 
frequency

tail amplitude y2 grows
linearly with time  

SLAC 50 GeV Electron Linac

Observation: Tail 
amplitude increasing 
along the Linac – caused 
by misalignments

K. Schindl CAS Baden Austria Multi-Particle Effects: Instabilities 20.9.2004            36/38



Transverse Instabilities - Cures

• As for longitudinal impedances: damp unwanted HOM’s, protect beam by
RF shields

• For “normal” transverse impedances, operate with a slightly positive
chromaticity frequency ωξ for γ < γt set ξ < 0 (by sextupoles)  

 for γ > γt set ξ > 0

• For the resistive wall impedance:
operate machine with a betatron tune just above an integer
use highly conductive vacuum pipe material to reduce Re(ZT) and 
growth rate

• Landau damping also works in the transverse plane; a betatron frequency 
spread ∆ωβ is generated by octupoles (betatron tune depends on 
oscillation amplitude)

0ξ Qω
η
ξω =
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Transverse Instabilities - Feedback

a position error in PU must result in an angle error in the deflector which is 
(partially) corrected there

betatron phase from PU to deflector ~ (2n+1) π/2

electronic delay ≡ beam travel time from PU to deflector  

Bandwidth: ~ a few 10 kHz to a few MHz if only resistive wall
~ up to half the bunch frequency with bunch-by-bunch feedback
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