

BADEN - AUSTRIA

20/21 September 2004

THE CERN ACCELERATOR SCHOOL

Multi-Particle Effects: Instabilities

Karlheinz SCHINDL/CERN-AB

Longitudinal Instabilities

Basics

"Negative Mass" Instability Stability Diagram and Landau Damping Longitudinal Stability Criterion Impedance (resonator) Line spectra: single particle, single bunch Bunched beam longitudinal instability: - one bunch; many bunches Higher-order coupled-bunch modes Microwave instability Cures

Transverse Instabilities

Fields and forces Transverse coupling impedances Spectrum of beam signals Instability of un-bunched beam Bunched beam: Head-Tail instability - zero and non-zero chromaticity Many bunches - long and short Resistive wall instability Transverse wake fields Cures

Further Reading:

- A. Hofmann, Single beam collective phenomena longitudinal, CAS Erice, 1976, CERN 77-13, p. 139
- J. Gareyte, Observation and correction of instabilities in circular accelerators, CERN SL/91-09 (AP), Joint US-CERN Accelerator School, Hilton Head Island, USA, 1990
- F. Pedersen, Multi-bunch instabilities, CERN PS 93-36 (RF), Joint US-CERN Accelerator School, Benaldamena, Spain 1992
- A.W. Chao, Physics of collective beam instabilities in high energy accelerators, John Wiley&Sons, New York, 1993

V acts back on the beam ⇒ INSTABILITIES INTENSITY DEPENDENT

General Scheme to investigate instabilities

- **Step 1:** Start with a **nominal particle distribution** (i.e. longitudinal position, density)
- **Step 2:** Compute **fields** and **wall currents** induced by a **small perturbation** of this nominal distribution, and determine **forces acting back on the beam**
- **Step 3:** Calculate change of distribution due to these forces

If Initial Small Perturbation

"Negative Mass" Instability - Qualitative λ (S) Un-bunched (=coasting) beam in a ΔE ΔE proton/ion ring, travels around ring with angular frequency ω_0 S Line density $\lambda(s)$ [particles/m] is modulated around the synchrotron F n = 8 humps WILL THE HUMPS INCREASE OR ERODE? Zooming in one modulation Line density modulation "mode" with n=8 humps **Increases** energy of particles in B The self-force F (proportional to $-\partial\lambda/\partial s$) **Decreases** energy of particles in A $\gamma < \gamma_t$: if $\Delta E \uparrow$ then $\Delta \omega_0 \uparrow$ A and B move away from the STABLE hump eroding the mountain $\gamma > \gamma_t$: if $\Delta \mathbf{E} \uparrow$ then $\Delta \omega_0 \downarrow$ A and B move towards the UNSTABLE hump enhancing the mountain

Negative Mass Instability: Fields Created by Beam

Negative Mass Instability: Field Acting Back on Beam

 $\lambda(s)$ has n humps and rotates with Ω near but not exactly $n\omega_0$

 $\lambda = \lambda_0 + \lambda_1 e^{i(n\Theta - \Omega t)}$, $I + I_0 + I_1 e^{i(n\Theta - \Omega t)}$ instantaneous density λ_1 and current I_1

Negative Mass Instability: Shortcut to Compute $\Delta \Omega$

 \Box Replace ω_s by $\Delta \Omega$

 \Box Replace hV_0 by beam-induced voltage in ZI_0 with $Z = Z_r + iZ_i$ complex impedance

Complex Frequency shift required to sustain "selfconsistent" modulation

Instantaneous current with $\Delta \Omega = \Delta \Omega_r + i \Delta \Omega_i$

From $U_s = -I_1 e^{i(n\Theta - \Omega t)} \mathbb{Z}$ and $Z_0 = 1/\epsilon_0 c = 377 \Omega$ $\mathbf{Z}_{\mathbf{i}} \neq \mathbf{C}$ $n\omega_0 L$ inductive space charge impedance impedance Zi $\gamma > \gamma_t (\eta < 0) (m < 0)$ $\gamma < \gamma_t (\eta > 0)$ (capacitive) $|\Delta \Omega_i = 0$ STABLE > 0 $\Delta \Omega_i \neq 0$ UNSTABLE < 0(inductive) $\Delta \Omega_i \neq 0$ UNSTABLE $\Delta \Omega_i = 0$ STABLE

□ $Z_r \neq 0$: realistic resistive vacuum pipe $\Delta \Omega_i \neq 0$ always one unstable solution

Stability Diagram

□ Relates (complex) growth rate $\Delta\Omega$ to (complex) impedance Z $(\Delta\Omega)^2 = -i \xi (Z_r + iZ_i) = \xi (Z_i - iZ_r) = (\Delta\Omega_r + i\Delta\Omega_i)^2$ □ Plot contours $\Delta\Omega_i = \text{const}$ (= equal growth rate) into Z_r , Z_i plane. Equating real and imaginary parts yields parabolae for $\Delta\Omega_i = \text{const} \Rightarrow Z_r = 2\Delta\Omega_i \sqrt{Z_i/\xi + \Delta\Omega_i^2/\xi^2}$

Stability Diagram

For any $Z_r \neq 0$ the unbunched beam is subject to the negative mass instability and is unstable even at low intensity! Is there a way out?

YES: LANDAU DAMPING

In real machines, the beam has an energy spread, so individual particles move with different oscillation frequencies around the ring \rightarrow the coherent motion becomes confused and may collapse faster than the rise time of the instability

Landau Damping - Basic Idea

Landau Damping and Stability Diagram

The evaluation of the integral with the pole at $\Omega = \omega$ shows that Landau Damping only works if coherent frequency of the external excitation lies inside the frequency spread of the oscillators. The stability diagram has then a stable region!

Stability Diagram with Landau Damping

The form of the "bottle" depends on $g(\Omega)$; for most distributions, a circle can be inscribed, giving a handy approximation for the longitudinal stability limit of unbunched beams

$$\frac{\left|\frac{Z}{n}\right| \leq F \frac{m_0 c^2 \beta^2 \gamma \left|\eta\right| \left(\Delta p/p\right)^2}{e I_0}}{KEIL-SCHNELL CRITERION}$$

Coasting Beam Longitudinal Instability excited by Narrow-Band Resonator: Example at CERN PS (LHC Beam)

A narrow-band resonator (114 MHz cavity) drives a longitudinal coasting beam instability if the gap short circuit is open (left). Several neighbouring modes are driven, resulting in increased momentum spread. Horizontal: Δf proportional to $\Delta p/p$ ("Schottky" scan on a spectrum analyser) Vertical: time moving downwards, total 180 ms.

Impedance of a Resonator

Impedance of a Resonator

$$Z(\omega) \approx R_{s} \frac{1 - i2Q \frac{\Delta \omega}{\omega_{r}}}{1 + \left(2Q \frac{\Delta \omega}{\omega_{r}}\right)^{2}}$$

Impedance of a narrow-band ("high-Q") Cavity

with $\Delta \omega = n\omega_0 - \omega_r$, R_s = "shunt impedance" The excitation signal in such a cavity decays slowly: the field induced by the beam is memorized for many turns

Γ_k(ω)

► t	
	Fourier transform

SINGLE BUNCH

 $\sigma_{\omega} \sim 2\pi/\sigma_{b}$: the shorter the bunch, the wider the spectrum

SPECTRUM AND IMPEDANCE

Narrow-band impedance $Z(\omega)$ driving a single mode (here 7 ω_0)

seen by a

spectrum analyser

ω

 $\widetilde{I}(\omega) = \frac{2}{T_0} \int_{-T}^{T_0/2} I_k(t) \cos(n\omega_0 t) dt$

🗑 Longitudinal Instabilities with Many Bunches

Fields induced in resonator remain long enough to influence subsequent bunches
 Assume M = 4 bunches performing synchrotron oscillations

□ Four possible phase shifts between four bunches

□ M bunches: phase shift of coupled-bunch mode n: $2\pi \frac{n}{M}$, $0 \le n \le M - 1 \Rightarrow$ M modes

Coupled-Bunch Modes and Stability

M = 4 bunches, resonator tuned at ω_0

Four stationary buckets (no synchrotron oscillations) Voltages induced by bunches 2 and 4 **cancel** Voltages induced by bunches 1 and 3 **cancel** → NO EFFECT

Voltages induced by bunches 2 and 4 cancel, but bunches 1 and 3 induce a net voltage Bunch 2 accelerated, bunch 4 decelerated Synchrotron oscillation amplitude increases → UNSTABLE

Voltages induced by bunches 2 and 4 cancel, but bunches 1 and 3 induce a net voltage Bunch 2 accelerated, 4 decelerated Synchrotron oscillation amplitude decreases STABLE

Dipole (m=1) and higher-order (m=2,3,4) modes in a synchrotron with 5 bunches Two adjacent bunches shown. *Note phase shifts between adjacent bunches*

Longitudinal Microwave Instability

• < 1 Ω for modern synchrotrons

Microwave Instability - Stability Limit

- The Broad-Band Impedance with Q=1 has little memory
 - No coupling between consecutive bunches
 - > Microwave instability is a single bunch effect
- leading to longitudinal bunch blow-up
- In lepton machines also called "turbulent bunch lengthening"

STABILITY LIMIT: Apply Keil-Schnell criterion for unbunched beams to instantaneous current and momentum spread

K. Schindl CAS Baden Austria

Longitudinal Instabilities - Cures

- Cavities "Parasitic" Modes are damped by "Higher Order Mode Dampers" (HOM): the unwanted mode is picked up by an antenna and sent to a damping resistor.
- Unwanted Resonators in beam pipe: RF shield protects the beam mimicking a smooth beam pipe
- □ Microwave Instabilities: Reduce Broad-Band Impedance by smooth changes in beam pipe cross section and shielding cavity-like objects. Large $\Delta p/p$ helpful (Landau damping) but costly in RF voltage.

Feedback systems: The beam phase or amplitude deviation is measured with a synchronous detector and corrected in an accelerating gap covering the bandwidth

- ⇒ In-phase (n=0) dipole mode tackled by "phase loop" locking beam phase to RF phase
- Coupled-bunch (n≠0) instabilities are controlled by feedback loops either tackling each of M bunches or each mode n (out of M) individually; bandwidth ~ ½ Ma₀

Transverse Beam Instabilities - Fields and Forces

Transverse Coupling Impedance

$$Z_{T}(\omega) = i \frac{\oint [\vec{E} + \vec{v} \times \vec{B}]_{t} ds}{\beta I \delta}$$
phase shift between dipole moment To and deflecting field

Relation between Z_T and Z_L (Z_L longitudinal impedance called Z so far), for a resistive round pipe:

$$Z_{\rm T}(\omega) \cong \frac{2c}{b^2} \frac{Z_{\rm L}}{\omega}$$

Handy approximate relation between Z_T and Z_L

 $\frac{ds}{ds} = \frac{\text{Deflecting field integrated around ring}}{\text{Dipole moment of exciting current}}$

[**Ω**/m]

Transverse Impedance Z_T vs. Longitudinal Impedance Z_L

	ZL	Z _T
unit	Ω	Ω /m
Symmetry real part	even	odd
Symmetry imaginary part	odd	even
Orders of magnitude for synchrotrons	~ Ω	MΩ/m

Transverse and Longitudinal Impedances

🗑 Transverse Beam Signals – Time and Frequency

🕅 Transverse Instabilities - Unbunched Beam

MODE: particles are arranged around the synchrotron with a strict correlation between transverse particle positions.

The mode shown is n=4, a snapshot at t=0. A single particle always rotates with revolution frequency ω_0 but the pattern n rotates with $\omega_n \neq \omega_0$

$\omega_n = \left(1 + \frac{Q}{n}\right)\omega_0$

Rotation frequency

of mode pattern

🞯 Unbunched Beam - Transverse Growth Rate

Only one mode n (one single line) grows, so only Z_{T} around frequency $(Q+n)\omega_0$ relevant

 $F(t) = e(\vec{E} + \vec{v} \times \vec{B})_{T} = -i \frac{e\beta I Z_{T}}{2R \pi} y(\theta(t)) \qquad Z_{T} = i \frac{\int_{0}^{2\pi K} (\vec{E} + \vec{v} \times \vec{B})_{T} ds}{\beta v I}$ • Assume $e(\vec{E} + \vec{v} \times \vec{B})_{T}$ constant around the ring for a given y $\ddot{y} + Q^2 \omega_0^2 y = \frac{Force}{m_0 \gamma} = -i \frac{e\beta I Z_T}{2\pi R m_0 \gamma} y \quad \text{where} \quad y = y_n e^{i(Q\omega_0 t - n\theta_0)}$ A particle's betatron amplitude y(t) $\ddot{y} + \underbrace{(Q\omega_0 + \Delta\Omega)^2}_{Q_0 Q_0} y = 0 \implies \Delta\Omega = i \frac{e\beta Z_T I}{4Q\pi\omega_0 R\nu m_0},$ satisfies $\approx O^2 \omega_0^2 + 2O \omega_0 \Delta \Omega$ • With $\omega_0 R = \beta c$ and $\Delta \Omega = i \frac{c Z_T I}{4 \pi \Omega E / e}$ Transverse growth rate, un-bunched $\gamma m_0 = E/c^2$ **beam**, Z_{T} constant around the ring Unstable if $Im(\Delta \Omega) < 0$ Single particle $y(t) = y_n e^{i[(Q\omega_0 + \Delta \Omega)t - n\theta_0]}$ \geq Re [Z_T((Q+n) ω_0)] < 0 oscillation changed to (Q+n) < 0 slow waves! For unbunched beam, only slow wave unstable (applies also for bunched beam)

Bunch shape observed with current monitor

All particles perform synchrotron oscillations – their energy changes with frequency ω_s

ZERO CHROMATICITY

$$\xi = \frac{dQ}{Q} \bigg/ \frac{dp}{p} = 0$$

All particles have same betatron tune Q - even with changing energies

RIGID BUNCH MOTION (m=0) [A. SESSLER ~1960]

All particles in the bunch start at t=0 with same betatron phase. Although synchrotron motion sweeps them back and forth and changes their energy, they all oscillate in phase

transverse position $y(\tau)$ *current $I(\tau)$ = position monitor signal

K. Schindl CAS Baden Austria

🗑 Transverse Instabilities - Head-Tail Modes

K. Schindl CAS Baden Austria

Head-Tail Modes with Non-Zero Chromaticity

ξ≠0: Q varies along the synchrotron orbits

In the sketch, one assumes

$$\xi = \frac{dQ/Q}{dp/p} > 0,$$

$$\gamma < \gamma_t \left[\eta = \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2} < 0 \right]$$

 χ_kbetatron phase slip after k machine turns $\chi_{....}$ betatron phase slip between head and tail T_0revolution time $\hat{\tau}$ half bunch length

The pattern ("mode") can be kept stationary if the particles' betatron phases are arranged as in the figure

Total phase shift between head and tail

$$\chi = \frac{\xi}{\eta} Q\omega_0 \times 2\hat{\tau}$$

Head-Tail Phase Shift Changes Bunch Spectrum

| l₀ [(nω₀–<mark>ω_ε</mark>) ϟ]

ω_μ

a position monitor which sees

during bunch passage time 2

• the monitor (or an impedance) "sees" an additional frequency

• a phase shift of χ radians

The **shorter** the **bunch length** $\hat{\tau}$, the larger the width of the spectrum

K. Schindl CAS Baden Austria

Example: Mode m=0

Head-tail mechanism discovered by C. Pellegrini, M. Sands end 60ies

"Standard model" F Sacherer mid-70ies

	η	لح	ωξ
$\gamma < \gamma_t$	< 0	> 0	< 0
		< 0	> 0
$\gamma > \gamma_t$	> 0	> 0	> 0
		< 0	< 0

Transverse Instabilities - Many Bunches

Transverse positions of bunches arranged to form a pattern of n waves around the synchrotron

> Coupled-bunch mode n

With M bunches, bunch-tobunch betatron phase shift $2\pi n/M$

- n=2 (waves), M=16 (bunches)
- bunch-to-bunch betatron phase shift $\pi/4$
- Head-tail phase shift small
- · behaves like coasting beam

- n=2, M=8
- bunch-to-bunch betatron phase shift $\pi/2$
- \bullet Head-tail phase shift χ large
- can only be sustained with a certain value $\chi{\neq}0$

Spectrum for

- \cdot M=4 bunches
- m=0 nodes within the bunch
- q = 0.25
- coupled-bunch modes n=0,1,2,3

Bunched Beam Transverse Stability vs. Impedance

Narrow-Band Resonator

- only two spectral lines contribute to the sum
- Fields stored long enough to act on subsequent bunches during several turns

Broad-Band Resonator

- \cdot extends to ~GHz
- \cdot thus spectral lines very dense
- spectrum envelopes d_0 , d_1 , d_2 for modes m=0, m=1, m=2 shown
- Quality factor Q low → fields not stored long enough to influence subsequent bunches

For any "normal" transverse impedance

 $\frac{\omega_{\xi}}{\Sigma \operatorname{Re}[Z_{T}]} d_{0}^{2} > 0 \rightarrow \text{stable}$

 $Jm(Z_{T})$

 $\Sigma \operatorname{Re}[Z_T] d_0^2 > 0 \rightarrow \text{stable}$

ω_ξ > 0

 $\Sigma \operatorname{Re}[Z_T] d_0^2 < 0 \rightarrow \text{unstable}$

Re (Z_T)

1GHz

Resistive Wall Transverse Instability

$$\operatorname{Re}(Z_{\mathrm{T}}) = \frac{2cR}{\omega b^{3}} \frac{\rho}{\delta} (\operatorname{low} \omega)$$

 $\rho...$ resistivity of beam pipe $\delta...$ wall thickness (low frequency)

- not a "normal" transverse impedance
- dominant line at Re(Z_T) most negative at very low frequency
- dominant mode normally m=0 but cannot be stabilized by setting $\omega_{\epsilon} > 0$
- setting Q above an integer (q < 0.5) puts dominant line near the origin but at $Re(Z_T) > 0$ thus stabilizing the beam

Further increasing ω_{ξ} (by varying ξ with sextupoles) may drive the hump of m=1, 2 etc. onto this dominant line, thus switching from one mode to the next.

For the resistive wall impedance, fractional tune q < 0.5 preferable (A.Sessler 60ies)

Horizontal Head-Tail Instabilities in CERN PS

A single bunch with $\sim 10^{12}$ protons and ~150 ns length on the 1.4 GeV injection plateau in the CERN PS (below transition energy)

Head-tail mode numbers m=4,...,9 are generated by changing horizontal chromaticity ξ_h from -0.5 (m=4) to -1.3 (m=10). The natural chromaticity, $\xi_{\rm h} = -0.9$, yields m=6 (6 nodes). For all pictures, $\omega_{E} > 0$, which normally stabilizes the beam, but not in this case.

 \rightarrow The impedance responsible for this horizontal instability is the resistive wall impedance

K. Schindl CAS Baden Austria

+20 ns/div

Transverse Wake Fields

Instead of treating instability dynamics in the frequency domain as done so far, one can do it in the time domain by using "Wake Fields"

What is a Wake Field?

Point charge q_1 passes through a resonator with a transverse displacement δ . The induced Wake field W will act on the subsequent charge q_2 .

The Wake Field concept is very useful for impedances with short memory where the fields do not act on subsequent bunches but only on particles within the same bunch (single-bunch effects). Example: broad-band impedance (low-Q resonator)

🕎 Transverse Wake Fields - A Simple Model

Approximate bunch by just two superparticles "head" (1) and "tail" (2) with Ne/2 charges each

If head is displaced by $\delta,$ force on particle in tail is

Both head (y₁) and tail (y₂) oscillate with same betatron frequency ω_{β}

Excitation on right-hand side has same frequency

tail amplitude y₂ grows linearly with time

Observation: Tail amplitude increasing along the Linac - caused by misalignments

K. Schindl CAS Baden Austria

Transverse Instabilities - Cures

- As for longitudinal impedances: damp unwanted HOM's, protect beam by RF shields
- For "normal" transverse impedances, operate with a slightly positive chromaticity frequency $\omega_{\xi} \rightarrow \text{for } \gamma < \gamma_t \text{ set } \xi < 0 \text{ (by sextupoles)}$ $\rightarrow \text{for } \gamma > \gamma_t \text{ set } \xi > 0$ $\omega_{\xi} = \frac{\xi}{\pi} Q \omega_0$
- For the resistive wall impedance:
 - > operate machine with a betatron tune just above an integer
 - > use highly conductive vacuum pipe material to reduce $Re(Z_T)$ and growth rate
- Landau damping also works in the transverse plane; a betatron frequency spread $\Delta \omega_\beta$ is generated by octupoles (betatron tune depends on oscillation amplitude)

Transverse Instabilities - Feedback

□ a position error in PU must result in an angle error in the deflector which is (partially) corrected there

 \Box betatron phase from PU to deflector ~ (2n+1) $\pi/2$

electronic delay = beam travel time from PU to deflector

```
Bandwidth: ~ a few 10 kHz to a few MHz if only resistive wall
~ up to half the bunch frequency with bunch-by-bunch feedback
```