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Lattice and  Beam Optics of a typical high energy storage ring

Part II: Periodic Soluion, the Beta Function



Beam parameters of a typical
high energy ring:

Ip = 100 mA
Ie=  50 mA

I.) the Beta Function
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number of particles per bunch:

p
N . *=

107 3 10

... question: do we really have to calculate some 1010 single particle trajectories ?

Example: HERA Bunch pattern



Equation of motion:
Hill´s equation

Example: particle motion with 
periodic coefficient

consider for the moment: ∆p/p=0 
1/ρ = 0

equation of motion: 0x (s) k(s)x(s)′′ − =

* restoring force  ≠ const,                                                we expect a kind of quasi harmonic
k(s) = depending on the position s            oscillation:  amplitude & phase will depend 
k(s) = periodic function on the position s in the ring.

Ansatz: { }x(s) Au(s)cos (s)ψ φ= + A, Φ = integration constants
determined by initial conditions

{ } { }x (s) Au (s)cos (s) Au(s)sin (s) (s)ψ φ ψ φ ψ′ ′ ′= + − +



{ } { }

{ } { }

2

2

x (s) A u (s) u(s) (s) cos (s)

A u (s) (s) u(s) (s) sin (s)

ψ ψ φ

ψ ψ ψ φ

′′ ′′ ′= − + −

′ ′ ′′− + +                                   
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{ } { }

2

2 0

A u (s) u(s) (s) ku(s) cos (s)

A u (s) (s) u(s) (s) sin (s)

ψ ψ φ

ψ ψ ψ φ

′′ ′− − + −

′ ′ ′′− + + =                              

2 0

2 0

u (s) u(s) (s) ku(s) (i)

u (s) (s) u(s) (s) (ii)

ψ

ψ ψ

′′ ′⇒ − − =

′ ′ ′′⇒ + =        

insert  x(s) and x´(s) into Hill´s equation:

we get two conditions:

from (ii) we obtain:

2
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... the phase of the oscillation is 
given by its amplitude 
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1
0u (s) k(s)u(s) (iii)

u (s)
′′ − − =inserting into (i):

following tradition we define instead of u(s) ...

The Betafunction

2(s) : u (s) Aβ ε= =    

and get for the particle trajectory

{ }x(s) (s) cos (s)ε β ψ φ= + where 
0

s

ds
(s)

(s)
ψ

β
= ∫

�

�

β



The Betafunction

* β is uniquely determined by the equation

* equation (iii) cannot be solved analytically
… but numerically if needed 

* by definition: β > 0

* β represents the focusing properties but – unlike k(s) – it depends on the total 
configuration of the ring.   

*  β is a periodic function: β( s+C0 ) = β(s)

* β defines at any position s the amplitude 
of the transverse particle oscillation

3

1
0u (s) k(s)u(s) (iii)

u (s)
′′ − − =

{ }x(s) (s) cos (s)ε β ψ φ= +

... allright, but what is ε



II.) Phase Space Ellipse and Liouville´s Theorem

{ }x(s) (s) cos (s) (i)ε β ψ φ= +

general solution of the particle trajectory:

{ } { }
1 1
2

x (s) (s)cos (s) (s) sin (s) (s)
(s)

ε β ψ φ ε β ψ φ ψ
β

′ ′ ′= + − +

the phase Ψ(s) is determined by β(s), namely Ψ´(s) = 1/ β(s) and defining the new variable  
α(s) = - β´(s)/2 we get 

{ } { }x (s) (s)cos (s) sin (s)
(s)

ε
α ψ φ ψ φ

β

−
 ′ = + + + 

using (i) we can replace the cosine term in this expression { }
x(s)

cos (s)
(s)

ψ φ
ε β

+ =

Joseph Liouville,
1809-1882

... may I introduce you to Mr. Liouville:

„under the influence of conservative forces, the particle 
density in phase space is constant.“



{ }
(s)x (s) (s)x(s)

sin (s)
(s)

β α
ψ φ

ε β ε

′

⇒ + = − −

remember from school: sin2x + cos2x = 1

2 2

1
(s)x (s) (s)x(s) x(s)

(s) (s)

β α

ε β ε εβ

 ′         ⇒ + + =           

2
2(s)x(s) x (s)

(s)x (s)
(s)(s)

α
ε β

ββ

   ′= + + 
 
  

2
2 2 1

2
(s)

(s)x (s) (s)x(s)x (s) x (s)
(s)

α
ε β α

β

+
′ ′= + +

we define a new variable:  γ(s) = (1 + α2) / β

(s) x (s) (s) x(s)x (s) (s) x (s) constε β α γ′ ′= ⋅ + ⋅ + ⋅ =
2 22

{ }
(s)x(s)

x (s) sin (s)
(s) (s)

ε α
ψ φ

β εβ

 − ′⇒ = + + 
 
  



focusing lens 

dipole magnet

defocusing lens 

Remember: transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

etotal QF D QD B nd D*.....M M * M * M * M * M=

x(s)

s

K. Wille

2 1

s2,s1

s s

x x

M( )*
x x

   
      =   ′ ′         

typical values 
in a strong 
foc. machine:
x ≈ mm, x´ ≤ mrad

0



Phase Space Ellipse and Liouville´s Theorem

2 22(s) x (s) (s) x(s)x (s) (s) x (s)ε β α γ′ ′= ⋅ + ⋅ + ⋅

parametric representation of an ellipse  in the  x, x´ phase space,
ε = “Courant Snyder Invariant”

x´

x
εβ

εα
β

−

εγ

εα γ−

Area of the ellipse: π εA = *

* Nota bene: as α, β, γ are functions of s 
the shape of the ellipse will change if 
we go around the ring, but the area is constant.

* if α = 0 the β-function reaches its extreme  
value and the ellipse is upright  in x or x´
direction. 

●

●

●

●

●

●



L

QF QDExample: FODO Structure
regular, periodic pattern of focusing 
and defocusing quadrupole lenses

optics calculation: 
βx, βy in a FODO 
α = -1/2 β´= 0 in the center of 
the quadrupole

x

εβ

/ε β

x´

... in the center of a foc. quadrupole the 
particle amplitude reaches its maximum



III.) Beam Emittance and Envelope

consider a particle whose ellipse in phase space surrounds all other ellipses
� due to Mr. Liouville the area of this single particle will forever enclose all others
� define an emittance of the beam in the sense that

beam
ˆ ˆArea (s)πε σ εβ= ⇔ = ε =  beam emittance

in practice: transverse particle density in a beam ≈ Gauß distribution

beam B
(s)σ ε β= ⋅

Example: HERA transverse beam profile
measured at the interaction point

beam envelope

beam divergence:

2 22(s) x (s) (s) x(s)x(s) (s) x (s)ε β α γ′ ′= ⋅ + ⋅ + ⋅

solve for x´ and require 
dx

dx

′
=0

max B B
x (s)

α
ε ε γ

β

+
′ = =

21

σ



... so sorry const.ε ≠

According to Hamiltonian mechanics: 
phase space diagram relates the variables q and p

q position x= =

x
p momentum mcγβ= =

Liouvilles Theorem: pdq const=∫

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

x
dx dx dt

x
ds dt ds

β

β
′ = = = where β = v/c

and Liouville tells us:

x
p dq const mc dx mc x dxγβ γβ ′= = =∫ ∫ ∫

const
x dx

βγ
′⇒ =∫ the beam emittance shrinks during 

acceleration   ε ~ 1 / γ



IV.) Transformation of α, β, γ

consider two positions in the storage ring: s0  , s

s s

x x C S

M M
x x C S

              = ⋅ =     ′ ′  ′ ′              
0

since ε = const: x xx x x x x xε β α γ β α γ′ ′ ′ ′= + + = + +
2 2 2 2

0 0 0 0 0 0 02 2

express x0 , x´0 as a function of  x, x´.

s

x x S S
M , M

x x C C

− −

 ′ −             = ⋅ =       ′ ′    ′    −       

1 1

0
... remember W = CS´-SC´ = 1

x S x Sx x C x Cx′ ′ ′ ′ ′→ = − = − +0 0

inserting into ε x xx xε β α γ′ ′= + +
2 22

(Cx C x) (S x Sx )(Cx C x) (S x Sx )β α γ′ ′ ′ ′ ′ ′ ′ ′= − + − − + −
2 2

0 0 02

sort via x, x´and compare the coefficients to get ....



(s) C SC Sβ β α γ= − +
2 2

0 0 02

(s) CC (SC S C) SSα β α γ′ ′ ′ ′= − + + −0 0 0

(s) C S C Sγ β α γ′ ′ ′ ′= − +
2 2

0 0 02

in matrix notation:

s

C SC S

CC SC CS SS

C S C S

β β

α α

γ γ

 −                    ′ ′ ′ ′= − + − ⋅                    ′ ′ ′ ′       −   

2 2

0

0

2 2 0

2

2

!

1.)  this expression is important

2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and 
calculate their values at any other point in the ring.

3.) the transfer matrix is given by the focusing properties of the lattice elements, 
the elements of M are just those that we used to calculate single particle trajectories.

4.) go back to point 1.) 



Example: symmetric Drift space

C S l

M
C S

         = =    ′ ′        

1

0 1

start at a symmetry point

,α γ
β

= =0 0
0

1
0

(l) l l , (l) l, (l)β β α γ α α γ γ γ= − + = − =
2

0 0 0 0 0 02
transformation of the 
Twiss parameters in a drift:

l
(l)β β

β
= +

2

0
0

* in a (symmetric) drift space the β function grows quadratically with the 
distance l to the starting point

* small beam sizes lead to a fast increase of the beam envelope in the drift
* collision points in a lattice need special care

Example: 
Zeus detector 
at HERA



V.) Transfer Matrix M ... yes we had that topic already 

{ }x(s) (s) cos (s)ε β ψ φ= +

{ } { }x (s) (s)cos (s) sin (s)
(s)

ε
α ψ φ ψ φ

β

−
 ′ = + + + 

general solution 
of Hill´s equation

remember the trigonometrical gymnastics:  sin(a+b)=sin(a) cos(b)+cos(a) sin(b)
cos(a+b)=cos(a) cos(b) - sin(a)sin(b)

( )
s s s

x(s) cos cos sin sinε β ψ φ ψ φ= −

[ ]
s s s s s s

s

x (s) cos cos sin sin sin cos cos sin
ε
α ψ φ α ψ φ ψ φ ψ φ

β

−
′ = − + +

define the starting point: s(0) = s0 ,   x(0) = x0 ,  x´(0)= x´0 ,  α(0) = α0 ,  β(0) = β0 ,  Ψ(0) = 0

x

cos ,φ
εβ

=

0

0

x

sin (x )
α

φ β
ε β

′= − + 0 0
0 0

0

1

inserting above ...



{ } { }s

s s s s
x(s) cos sin x sin x

β
ψ α ψ β β ψ

β
′= + +0 0 0 0

0

( ){ } { }
s s s s s s s

ss

x (s) cos ( )sin x cos sin x
β

α α ψ α α ψ ψ α ψ
ββ β

′ ′= − − + + −0
0 0 0 0

0

1
1

which can be expressed ... for convenience ... in matrix form

xx(s)
M

xx (s)

         =   ′ ′        

0

0

( )

( )

s

s s s s

s s s s

s s s

s

cos sin sin

M
( )cos ( )sin

cos sin
s

β
ψ α ψ β β ψ

β

α α ψ α α ψ β
ψ α ψ

ββ β

 
 +    =    − − + −     

0 0
0

0 0 0

0

1

* we can calculate the single particle trajectories between two locations in the ring, 
if we know the α β γ at these positions. 

* and nothing but the α β γ at these positions. 

*     … !

( )

( )

s

s

s s

s

s

cos sin sin

M
( )cos ( )sin

cos sin
s

β
ψ α ψ β β ψ

β

α α ψ α α ψ β
ψ α ψ

ββ β

 
 ∆ + ∆ ∆    =    − ∆ − + ∆ ∆ − ∆     

0 0
0

0 0 0

0

1

*



Question: what will happen, if you do not make too 
many mistakes and your particle performs 

one complete turn ?

(s L) (s)β β+ =

(s L) (s)α α+ =

(s L) (s)γ γ+ =

turn turn

turn turn

cos sin
C S

M
C S sin cos

ψ β ψ

ψ ψ
β

         = =  −    ′ ′         

0

0

1
... and refer to a symmetry point: 

s=s0 ,  α0 = 0

Definition: phase advance 
of the particle oscillation 
per revolution in units of 2π
is called  tune

turn

Q
ψ

π

∆

=
1

2

x(s)

s

0



„veni vidi vici ...“         .... or in english ...  „we got it !“

s s

s

s

s

cos Q sin Q sin Q
C S

M(s) (C S sin Q cos Q sin Q

π α π β π

α
π π α π

β

 +        = =    − +  ′ ′  −        

2

2 2 2

1
2 2 2

* determine the matrices of the single lattice elements
* calculate the matrix product to get the one turn matrix (at a given starting position s)
* get all the information about the lattice functions – at that position s 
* ... for any periodic structure: storage ring, substructure 



VI.) Stability Criterion ... following Courant, Snyder: 
Annals of physics 3, 1958

Transfer Matrix for 1 turn:

NM(s N L) (M(s))+ ⋅ =and  for N turns:

M(s L) M(s)+ =

stable motion: all elements of M have to remain bounded after N turns.
� eigenvalues of M have to remain bounded.

x x

M
x x

λ

   
      =   ′ ′         

� solved by determinant equation det(M I)λ− = 0

write formally:
a b

M
c d

 
  =     

(a d) (ad bc)λ λ− + + − =
2 0

det M = 1

introduce a new parameter: cos traceM (a d )µ = = +
1 1
2 2

Nota bene: µ = real if traceM <
1

1
2



solution of the determinant equation: / cos i sinλ µ µ= ±1 2

The „Twiss“ Parametrisation of M

M I cos J sinµ µ= + I ,
 
  =     

1 0

0 1
J

α β

γ α

 
  =  − −  

a d
,

sin
α

µ

−

=

2
b

,
sin

β
µ

=

c

sin
γ

µ

−

=

moreover, as det (M) = 1
α

γ
β

+
=

21

Now consider again N turns:

N NM (I cos J sin ) I cos N J sin Nµ µ µ µ= + = + de Moivre´s formula

* The elements of M remain bounded if the parameter µ is real
* Stability criterion for periodic structures:

|cos µ| < 1
|trace (M)| < 2



Twiss Parametrisation: α, β, γ

... you know already that if ...

M I cos J sinµ µ= + I ,
 
  =     

1 0

0 1
J

α β

γ α

 
  =  − −  

cos sin sin

M
sin cos sin

µ α µ β µ

γ µ µ α µ

 +  =   − −  

so if M is given by the lattice elements ...
C S

M M M M M ...
C S

 
  = = ⋅ ⋅ ⋅  ′ ′   

1 2 3 4

we get:

S

sin
β

µ
=

C S

sin
α

µ

′−
=

2

C

sin
γ

µ

′−
= cos (C S )µ ′= +

1
2

* very usefull for exact and for 
back on the envelope calculations

* it has nothing to do with Prof. Twiss
(...says Prof. Twiss)



still about the trace ...

* The transfer matrix for one complete revolution is a function of the position s

cos (s)sin (s)sin
M

(s)sin cos (s)sin

µ α µ β µ

γ µ µ α µ

 +  =  − −  

* The trace of M however does not !
●

●

s1

s2
the transformation from s1 � s2 + 1 turn can be expressed in 
two ways:

S
R(s ,s C) M R(s ,s )+ = ⋅1 2 2 1 2

S
R(s ,s C) R(s ,s ) M+ = ⋅1 2 1 2 1

M denotes the 
1 turn matrix

R(s1 , s2)

multiply both eq. from rhs by R-1(s1,s2)

s s
M R(s ,s ) M R (s ,s )−

= ⋅ ⋅

1
2 1 2 1 1 2

Ms1 and Ms1 are related by a similarity 
transformation � the trace is unchanged

� µ does not depend on s

●

●

s1

s2
the transformation from s1 � s2 + 1 turn can be expressed in 
two ways:

R(s1 , s2)



VII.) Example: FoDo Structure

L

QF QFQD

FoDo: regular structure of Focusing and Defocusing quadrupole lenses
with „nothing“ in between.
Definition: „nothing“ = anything that can be neglected to first order: 

drifts, bending magnets, high energy physics detectors etc.

Transfer Matrices:

ld

QD QFhalf cell ldM M M M= ⋅ ⋅

2 2

d

half cell

f f

l

M
−

    
        = ⋅ ⋅                

1 1

1 0 1 01

0 11 1
� �

d
l L /= 2

f f= 2�

we put:

d

d d

l
df

half cell l l

f f

l

M
−

 −  =   +   2

1

1

�

� �

... for second half cell set f f→−
� �



d d

d

d d d

l l
l ( )

f f
M

l l l
( )
f f f

 
 − +    =     − −    

2

2

2 2

3 2 2

2
1 2 1

2
2 1

� �

� � �

cos sin sin

M
sin cos sin

µ α µ β µ

γ µ µ α µ

 +  =   − −  
compare to the Twiss Parametrisation:

α = 01.) we get at the starting point (middle of quad):

L

QF QFQD

ld

2.) Phase advance of the cell: 

d
l

trace(M) cos
f

µ= = −

2

2

4
2 2

�

d
l

cos
f

µ→ = −

2

2

2
1

�

after a good beer you will remember that: 

cos sin
µ

µ = −

21 2
2



3.) Stability Criterion for the FoDo:

d
l

trace(M)
f

= − <

2

2

4
2 2

�

cell
L

f⇒ >
4

4.) Example: HERA Proton Ring

L = 47m     k = 0.032 m -2 lquad =1.9m
f = 16.4 m    µ = 90°

cell
L

. m= 1175
4

L
sin

f

µ
=

2 4

2.) Phase advance of the cell: 

the phase advance of the particle oscillation
is given by the cell length L and the focal length f 

of the quadrupole lenses
FoDo structure in the SPS 



VIII.) Twiss Parameters in a FoDo 

L

QF QFQD

ld

assume the transformation from the 
foc. quad to the defocusing one

� same procedure as every year, James ...

matrix of the half cell
d

d d

l
df

half cell l l

f f

l

M
−

 −  =   +   2

1

1

�

� �

( )

( )

cos sin sin

M
( )cos ( )sin

cos sin

β
ψ α ψ β β ψ

β

α α ψ α α ψ β
ψ α ψ

ββ β

 
 ∆ + ∆ ∆    =    − ∆ − + ∆ ∆ − ∆     

2
1 2 1

1

1 2 1 2 1
2

22 1

1

L( sin )
ˆ

sin

µ

β
µ

+

=

1
2

compare to the matrix in Twiss form

L( sin )

sin

µ

β
µ

−

=

1
2�



IX.) Résumé:

general solution of the equation of motion { }x(s) (s) cos (s)ε β ψ φ= +

phase advance
s

s

(s ) ds
(s)

ψ
β

→
= ∫

2

1 2

1

1
�

�

Courant Snyder Invariant (s) x (s) (s) x(s)x (s) (s) x (s)ε β α γ′ ′= ⋅ + ⋅ + ⋅
2 22

Beam Dimensions:          beam size                             beam divergence(s)σ εβ= (s)σ εγ′ =

Transfer of Twissparameters

S S

C SC S

CC SC CS SS

C S C S

β β

α α

γ γ

 −                    ′ ′ ′ ′= − + − ⋅                    ′ ′ ′ ′       −   

2 2

2 2
2 1

2

2



Transfer matrix as a function of the Twiss parameters:

( )

( )

s

s

s s

s

s

cos sin sin

M
( )cos ( )sin

cos sin
s

β
ψ α ψ β β ψ

β

α α ψ α α ψ β
ψ α ψ

ββ β

 
 ∆ + ∆ ∆    =    − ∆ − + ∆ ∆ − ∆     

0 0
0

0 0 0

0

1

Tune:
R

Q ds
(s)

π

π β π β
= ≈∫

1 1 1 2
2 2�

If α0 = 0 :
Beta function in a symmetric drift: 

l
(l)β β

β
= +

2

0
0

Interpretation of β σ εβ=

/σ ε β′ =

σ
β

σ
=

′

R
Q

β
≈


