Introduction to Transverse Beam Optics

Bernhard Holzer, DESY-HERA

Part | ;. Lattice Elements and Equation of Motion

Lattice and Beam Optics of a typical high energy storage ring



Largest storage ring: The Solar System

astronomical unit: average distance earth-sun
1AE = 150 *10° km
Distance Pluto-Sun ~ 40 AE




Luminosity Run of a typical storage ring:

HERA storage ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about v = ¢
L = 1009-101 km
. several times Sun-Pluto and back
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>guide the particles on a well defined orbit (,design orbit")

> focus the particles to keep each single particle trajectory
within the vacuum chamber of the storage ring, i.e. close to the design
orbit.



Transverse Beam Dynamics:

0.) Introduction and basic ideas

. ...Intheend and after all it should be a kind of circular machine"
-> need transver se deflecting for ce

L orentz force F=q* (ﬁi+17><§)

\v%c%3* 10° 7/

typical velocity in high energy machines:

old greek dictum of wisdom:
If you are clever, you use magnetic fieldsin an accelerator where ever
It is possible.

But remember: magn. fields act allways per pendicular to the
velocity of the particle
-> only bending forces, -> no, beam acceleration®



Theideal circular orbit

consider a magnetic field B isindependent of the azzmuthal angle
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condition for circular orhit:

Lorentz force F,=e*v*B

2
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centrifugal force FE, .. :i

circular coordinate system P
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ideal condition for circular movement:

P_pgx*,
€

On acircular orbit, the momentum of the particleisrelated to the guide field B and the
radius of curvature p.



Focusing Forces.
|.) the principle of weak focusing

still: consider a magnetic field B isindependent of the azimuthal angle @

z, stability of the particle movement: small

deviations of particle from ideal orbit
@J Z
S X

< restoring forces
circular coordinate system
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* Introduce a gradient of the magnetic field

B 0B, , | 0B, =
evB, =ev (By+- = " x) = evb [1+ or B, field gradient , n“, by definition:
OB
— _ *E = —ﬁ Z
_evBo{l T p} n B, or
xr
* develop for small x ’P=p+w=P(1+;)
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condition for focusing in the horizontal plane:

F, :—e'vB*E(l—n)
P n<l

rest

Nota Bene: the condition does not exclude n = 0.
thereisfocusing even in a homogenous field.

, Geometric focusing“ in a homogeneous field:
consider three particles, starting at the
same point with different angles

Pl PZ
/T&\
Pl PZ\_/
Problem: amplitude of betatron oscillation in this case r~a*p

a ~ 1 mrad for a particle beam
r~1m

p ~ several 100m



weak focusing in the vertical plane:

restoring forcein , Z F,x-z
we need a horizontal magnetic field component: B, =-const* z
... Or anegative horizontal field gradient 9B, _ —const
0z
Maxwellsequation: Y x B =0 Az S

OB OB OB
X — Z — Z < O —&
0z ox or
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N
the vertical field component hasto decrease with increasing

radius typical pole shapein
a combined function ring
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Comments on weak focusing machines:

* magnetic field isindependent of the azmuthal angle @,
focusing gradient isincluded in the dipole field

* stability of the particle movement in both planes requires

O<n<l

* eguation of motion (see appendix): X+ woz( l1-n)x=0
oo 2 * _
Problem: we get less than one Z+won*z=0

transverse oscillation per turn
- large oscillation amplitudes

Separate the focusing gradients Example HERA:
from the bending fields to obtain g=8BT/m a p=90GeV/c



|1.) Accelerator M agnets

Separate Function Machines:
Split the magnets and optimise them according to their job: bending, focusing etc

Dipole Magnets: e —
homogeneous field created by two flat pole shoes
coit 51
7 757
calculation of the field: / :
3d Maxwell equation for a static field: VxH=j —t= —
| %
He ]
according to Stokes theorem: coil §1 A( 2/
yoke
f(%xﬁ)ﬁdazfﬁdizfj-ﬁda:N-I P vosa e
S S

N*| = number of windings

%ﬁdi:ﬂo* h+H,*1, times current per winding

in matter we get with g, <1000

L H
§ Hdl = Hy* h+=0% 1, ~ Hy* h
78



magnetic field of a dipole magnet: ol g
= :
g =]
m 7=}
B = ol >t _
0 S
h <
=2
: 2 051 .
radius of curvature < . 1 .
(=}
= =

..remember p/e=B*p
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p p[GeV/c] field map of a storagering
dipole magnet
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ds dl

a = ~
P

bending angle of a dipole magnet:

P
| | | [ B
for a circular machinerequire o = = 27 — del _ox*x P
B*p q

hard edge approximation:
define the effective length of a magnet by

By -l = [ Bdl typicallyweget Loy =Lyt L3 % B




Example HERA:

920 GeV Proton storagering:

N =416
| =8.8m,
g=+1le

Nota bene: for high energy
particleswe can set ...

Exp-c

21 * 00 * 10°%eV

-/

T 416%3*%10° T *88m * e

~ 515 Tesla

S



Quadrupole Magnets: R

required: linear increasng magnetic field

B,=—g-x B =—g-z

i

at the location of the particle trajectory: no iron, no current
VxB=0 — B=-VV
the magnetic field can be

expressed as gradient of V(z,z) =g-x=
a scalalr potential !

equipotential lines (i.e. the surface of theiron contour) = hyperbolas / \
calculation of thefield: xCZ/Q*\

f H-ds =nI @_<(B Lﬂv@_J

¢ H-ds = }H(r)dr+j




calculation of the quadrupole field:

R R
fH-dé’:[H(r)dr:[%jdr:n*I

B(r)=—g*r, r = Jz? + 2°

gradient Of a g . ZMnI rernernber: i _ 3)
quadrupole field: normalised dipolestrength: o D /e

normalised quadrupole strength:

K= 9
p/e

focal length:

1
k* I

Example of a sparated function
machine: heavy ion storage ring TSR




, Synchrotron Magnet*
combines the homogeneous field of a dipole with a quadrupole gradient

potential: V(X,z) = —Byz + g - =

advantage: lattice with high ]

compactness R —
disadvantage: strong correlation of momentum K J/

(via dipole field) and beam optics. T

- poor flexibility — -
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field index: B,=—=—B; + gz
0z
dx B, B,

Nota bene: Synchrotron magnet can be considered as a shifted quadrupole lens
, Off center quadrupol€e®.



111.) The equation of motion

Pre-requisites: * consider particleswith ideal momentum or at least with only small
momentum error
* neglect terms of second order in X,z,and Ap/p -2 linear approximation
* independent variable“s’,
write derivative with respecttosas ...

0, angleof ideal orbit . : particle trajectory
0 angleof particletrajectory ” ---------
derivative of particle amplitude with resp. tos "

X\

design orbit

wlza_HO

" _ d(@ T 00)
ds

€T

For any circular orbit path we get:

df, = —— — = — ... quite clear, but what isd @/ds ?

P ds P




(a) dO = — at — —dl Be asfor any circular
o P orbit we know:

aslong astheangle x" issmall dl isrelatedto s by:

(b) g=PLT=
P
d =(1+2)ds
P

Magnetic field: assume only dipole and quadrupole terms

remember:

_p OB definition of
B=h +aaz_3) —F field gradient

(c) B:&—mﬁzﬁF—@}

ep € € normalised strength

putting the term (b) and (c) into the expression for the angle de ...
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460 = —d1 8% = _(14 % )q5. B
D P Py + Ap
e. Po 1—k:1:
T e \p
do = —(1+ %)ds
p Py + Ap
2
dg = — Lo {i—kw+%—ki}ds
Py +Ap [p P P
develop the momentum Po ~ 11— Ap
p for small Ap Py + Ap Do

d@:—ds{i—kariz— _ AP Lk BP T AP 2 P}
P P DopP 0 P 0 Po

and keep only first order termsin X, z, Ap |
L]



46 = _ds{i_kar - AP}
p P’ Pop

... do you still remember the beginning ?
we were looking for ...

wu:dﬁ_dﬁo w//:_i+kw_w2+APi_d90
ds ds P P Po P ds
P p P

vertical direction:
* no bending (... in general) 2 no 1/p? term
* vertical gradient:

0B oB

V X B = 0 = 2 — L
ox 0z
* Lorentzforcegetsa“-": F=q (v xB)

2" + kz =0



|V.) Solution of trajectory eguations

horizontal plane:

. 1 1 Ap define;
z +(p2(8)—k(s))w=p(s) » K(s)=—k(s)+1/p*(s)
:I:”—|—I((s)*av::iﬂ
p P

2 Problems.  * inhomogeneous equation -2 set for the moment A p/p=0
I.e. consider particles of ideal momentum
* K(s) isnot constant but varies as a function of the azimuth
K(s) isa “time dependent” restoring force
- the differential equation can only be solved numerically

K(s) is prescribed by the storage ring design:
given by the magnet parameters

remember: hard edge model:
K = const within a magnet

SPS Lattice




1" * differential equation for the transverse oscillation of a
' + K xz =0 S . .
particle in a magnetic element of the storage ring.
(... harmonic oscillator)

* second order -2 two independent solutions,
* linear in X any linear combination of these ,, principal solutions* will again be
a solution.

we choose for K > 0:

C(s) = cos(JKs), S(s) = L

VK

with theinitial conditions: c(0)=1, S(0) =0

sin(Ks)

c’'(0)=0, 8§/(0)=1

for K< O:;

C(s) = cosh(~JKs) , S(s) = !

VK

sinh (VK s)

Arbitrary solution of any particle:

r(s) =z, -C(s)+ x5 -85(s)



Matrix formalism for beam transfer in a lattice:

r(s) = x5 -C(s)+ z}-S(s) x(s) z(s)
z'(s) =z, -C'(s)+ x5 -8'(s) z'(s) x'(s)

C(s) S(s)

where M =
C'(s) S'(s)

HERA standard type
guadrupole lens

... depending on the value of K we can establish a transfer matrix for any (linear)
|attice element in thering.

( 1
cos \J|K|l in J|K |l
JK|

S
K|

\—«/|K| sin (J|K |l cos \J|K|l

horizontal focusing quadrupole: K >0 M =




( 1
cosh J|K |l sinh (/|K |l
JIK|

vertical focusing quadrupole; K <0 M = K

\1/|K| sinh (J|K |l cosh (J|K |l

drift space: K=0 M — 11
0 1

particle motion in the vertical plane;

in general storage ringsare built in the horizontal plane.
no vertical bending dipoles = 15 =0

definee K = Ek - samemaitricesasin x-plane.

I with the assumptions made, the motion in the horizontal and vertical planes are
independent ,, ... the particle motion in X & zisuncoupled®

Il dont’t forget the inhomogeneous equation




transformation through a system of |attice elements

combine the single element solutions by multiplication of the matrices

typical values
in a strong

foc. machine:
x=mm, X~ <mrad|

R

\ .

g focusing lens

dipole magnet

-
; ‘f\ defocusing lens

v



Dispersion:
1ap
p P

general solution = complete solution of the homogeneous equation
+ particular solution of inhomogeneous equation

z(s) = z,(s) + z;(s)

inhomogeneous equation "’ + K(s)*z =

with z, + K(s)*x, =0 w,-”—l—K(s)*a:izlﬂ
p P
normalise with D(s) = z;(s)
respect to 4p/p: Ap /p
1

D"(s)+ K(s)* D(s) = initial conditions:. D, = Dj =0

z(s) =, - C(s)+ x}-S(s)+ D(s)%



Dispersion:

x cC S T
for convenience: _ + Ap
i . ’/ ’ ’ /
expand the matrix formalism: T c S| |z . p
or even more convenient " C S D -
| =|c’ 8" D'|.| <
Apl |0 0 1) |Aar
p s p s0
Determine the Dispersion from the lattice parameters:
remember: C and S are independent solutions
of the equation of motion - the Wronski determinant
even more, we get: ddW = j (cs’' —sc’)=cs” —sc”
S S

= _K(CS—SC)=0




Dispersion:

C,=1 C)=0
— W = const. choose the position s= s, where ,
S5,=0, S5,=1
wW=1

the dispersion trajectory can be calculated from the cosine and sinelike solutions:
D(s) = S’(s)f—C(s)ds —C(s) [ 5(3)d3
2, P(3)

proof: D(s) hasto fulfil the equation of motion

D'(s)=S'"(s) [ —1c(3)ds —C'(s) [ —— S(5)d3
5, P(3) 5, P(3)

D"(s) = 8"(s) f —C(s )ds —C"(s) f —S(s )ds + —(CS’ SC )

D" = —K(s)D(s)+ ~
o

<



Example: D(s) = s(s)fﬁlg)o(g)dg —C(s)f?]:_é)S(é')dé'

oy

drift: M, =

Yo=k=0,

—+ D(s)=0,D'(s)=0

o O
o B
_ O O

foc. Quadrupole;

1
cos \/@l 8in \/@l 0
VK| Yo =0,K=—k
Moo = \/@ sin \/@l cos \/@l 0
0

0 . — D(s)=0,D'(s)=0

dipole sector magnet: design orbit

angle at entrance and exit: 90° 90° 366 90
p



dipole sector magnet: % = const, k=0

K =1/p"
l .1
cos—  p-sin —
2X2 matrix M = P P
1 l l
— —sin— cos—
p P p

D(s) = S(.s)fjlgjo(g)dg_o(s)f?Z,)S(g)dg

l l
D(s):psiniofiocosids—cosi-fi-psz’nids
p 4P p p 4P p

D(s)=p- sinzi+cosi-

P P

cosi— 1

P

- p

D(s):p(l—cosi) D'(s):sz'ni)
p p




dipole sector magnet: cost  psint p(1—cost)
p p p
Mptoe = _—13an cosi sini
pp p p
0 0 1

Example: HERA Interaction region

p/e+ , Protonen Luminosiaels Optik qlzz hid2_ 8, 220 CeV
T T T T

typical values. Ap/p =103

D=1...2m
X, = D* Ap/p=1-2 mm

DISPERSION /7

210 -1 -2
4
i

startvalue: D, = D) =0

dispersion is generated as soon as we enter the dipole magnets
where l/p #0




Remarks on Magnet Matrices.

1.) thin Iens approximation:

1
cos \/|k|l sin \J|k|l
N NG N
—\/Wsin \/WZ cos \/WZ

matrix of a quadrupole lens M =

in many practical cases we have the situation:

1

J = IR >> 1, ..focal length of thelensis much bigger than the length of the magnet
q

limes. | —s Q Wwhilekeeping: kl = const

0) 1 0

1 S |
/ f}

<

I
<l e

<

I

L

.. usefull for fast (and in large machines still quite accurate) ,, back on the envelope
calculations® ... and for the guided studies'!
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3.) edge focusing: ... dipole, box-magnets*

-
- L
. L]
- L J
v

* horizontal plane:

particle at distance X, to the design orbit sees a ,, shorter magnetic field"

Al ==z, -tan ¢
error in the bending angle of the dipole

Al tan v
- = wo .
P P

Ao =

—>correspondsto a horizontal defocusing effect

... in the approximation of Al = small

tan = M = |tan v

1 0

P



3.) edge focusing: vertical plane

particle trajectory crosses the field lines at the dipole edge.
—~>horizontal field component
vertical focusing effect

1 0 fringe field effect at the edge of a dipole
M, = |—tan ¢ 1
o

for purists only: vertical edge effect depends on the exact form of the dipole fringefield

1 0

M, = .
z 12 b _tan ¥y 1 where b = distance over which the
p°- 6cosy P fringefield dropsto zero




Question: what will happen, if the particle performs a second turn ?

...or athirdoneor ... 1019 turns

Answer: ... will be discussed in the evening having a good glass of red wine
... or tomorrow in the next lecture.



V.) Resume: beam rigidity: B-p="F,

. . 1; _11 0.2998- By(T)
bending strength of a dipole: —|m™ | =
| ] P p[ | p(GeV /c)
: _ 0.2998 - g
. k 2| _
focusing strength of a quadrupole: [m ] p(GeV / c)
% [m_z] _ 0.2998 2,u0;n,I
p(GeV /c) a;
1
focal length of a quadrupole: = o1
q
1A
equation of mation: 2" + Ko = = =2
P P
matrix of a foc. quadrupole: z,=M- -z,
1
cos /| K|l sin | K]l
M= VIK]|

—\/@ sin \/@l cos \/@l






V1.) Appendix: Equation of motion in the case of weak focusing

restoring forcesarelinear in the deviations x, z from theideal orbit. Example: harmonic oscillation
of aspring

restoring force: F=-—c*zx

r

equation of motion: ~ E+c*x=0 — at)=a *coswt

e

in our case: E:—B—ev(l—n)w = —%@(1—70:13
P m p

o, , theangular revolution- (or cyclotron- ) frequency is obtained from:

mf/. — B MY — B
/p ey — /p E,: 2—%2(1—?’&)*%
“h :’U/P:e&m

w=\c/m=uy*J1—n

AsO<n<1lisrequiredfor stability the frequency of the transverse oscillations @ is smaller than
the revolution frequency e,



Maxwell‘s equations

Invacuum  V-E=p andinmatter V.D=p
oxB=jiOF N 75,
o ot
N OB -
=—— - - 0B
VXE 5 Oxpo_98
N ot
.B= Lo
v 0 V-B=0
Stokes integral theorem: f(%xﬁ)ﬁ da = fﬁ dl
GauR integral theorem: fV +Ad :fAn da
where A Vectorfield, da  Surface Element of the Surface S
V. Volume n Normvector on the Surface S
S

Surface surrounding the Volume V



Solution of the equation of motion:

!
" +kxr=0 k>0 - foc. quadrupole in the horizontal plane
Ansatz

z(t) = a; sin(wt) + a, cos(wt)

with the derivatives:  z’(t) = a,w cos(wt) — a,w sin(wt)

z”(t) = —a,w® sin(wt) — a,w® cos(wt)

= —w’x(t)
and we get for the differential equation:

x(t) = a, cos(kt) + a, sin(Jkt) with w =k

the constants a, and a, are determined by boundary (i.e. initial) conditions:
at we require
t=0 = z(0) =x,, ='(0)=x
z(0) = a, cos(0) + a, sin(0) o

z'(0) = —a,Vk sin(0) + a,Vk cos(0) —



z(t) = x, cos(\/Et)+T]O€sin(\/Et)

z'(t) = —xyVk sin(Vkt) + x) cos(Jkt)

or expressed for convenience in matrix form:

T T
_ *
1 .
COS \/Et — SN \/Et
M = Jk

—Jk sin Jkt cos kt




