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Lattice and  Beam Optics of a typical high energy storage ring

Part I: Lattice Elements and Equation of Motion



Largest storage ring: The Solar System

astronomical unit: average distance earth-sun
1AE ≈ 150 *106 km
Distance Pluto-Sun ≈ 40 AE

AE



HERA storage ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about v ≈ c
L = 1010-1011 km 
... several times Sun-Pluto and back

Luminosity Run of a typical storage ring:Luminosity Run of a typical storage ring:

�guide the particles on a well defined orbit („design orbit“)
�focus the particles to keep each single particle trajectory 
within the vacuum chamber of the storage ring, i.e. close to the design  
orbit.  



Lorentz force * ( )F q E v B= + ×

� � �
�

„ ... in the end and after all it should be a kind of circular machine“
� need transverse deflecting force

typical velocity in high energy machines:
83* 10 m

s
v c≈ ≈

old greek dictum of wisdom:
if you are clever,  you use magnetic fields in an accelerator where ever 
it is possible.

But remember:  magn. fields act allways perpendicular to the 
velocity of the particle
� only bending forces,   � no „beam acceleration“

Transverse Beam Dynamics:Transverse Beam Dynamics:

0.) Introduction and basic ideas
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The ideal circular orbit

consider a magnetic field B is independent of the azimuthal angle θ
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On a circular orbit, the momentum of the particle is related to the guide field B and the 
radius of curvature  ρ.



Focusing Forces:  
I.) the principle of weak focusing

still: consider a magnetic field B is independent of the azimuthal angle θ

stability of the particle movement: small 
deviations of particle from ideal orbit 
↔ restoring forces
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*  introduce a gradient of the magnetic field 
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1
ρ

= − −
rest

x
F evB* ( n) condition for focusing in the horizontal plane:

n < 1

Nota Bene: the condition does not exclude n = 0.
there is focusing even in a homogenous field.

„Geometric focusing“ in a homogeneous field:
consider three particles, starting at the 
same point with different angles 

P1 P2

P1 P2

Problem: amplitude of betatron oscillation in this case
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weak focusing in the vertical plane:

restoring force in „z“ ∝ -
z

F z

we need a horizontal magnetic field component:

... or a negative horizontal field gradient 
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the vertical field component has to decrease with increasing 
radius typical pole shape in 

a combined function ring



* magnetic field is independent of the azimuthal angle θ, 
focusing gradient is included in the dipole field 

0 1n< <

Comments on weak focusing machines:

* stability of the particle movement in both planes requires 

* equation of motion (see appendix):
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Problem: we get less than one 
transverse oscillation per turn 
� large oscillation amplitudes

Separate the focusing gradients 
from the bending fields to obtain 
n >>1

Example HERA: 

     at    98 / 920 /

12420

g T m p GeV c

n

= =

≈



II.) Accelerator MagnetsII.) Accelerator Magnets

Separate Function Machines:
Split the magnets and optimise them according to their job: bending, focusing etc 

Dipole Magnets:
homogeneous field created by two flat pole shoes

calculation of the field:

3rd Maxwell equation for a static field: ∇× =H j
� � �

according to Stokes theorem:
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field map of a storage ring 
dipole magnet
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Example HERA:

920 GeV  Proton storage ring: 
N = 416
l = 8.8m,

q = +1 e

9

8

2

2 920 10
                                                      5 15

416 3 10 8 8

Bdl N* l* B p/q

* * eV
B . Teslam

* * * . m*e
s

π

π

≈ =

≈ ≈

∫

Nota bene: for high energy
particles we can set ... 

E p c≈ ⋅



Quadrupole Magnets:

required: linear increasing magnetic field

= − ⋅ = − ⋅
z x

B g x B g z

at the location of the particle trajectory: no iron, no current

0∇× = → = −∇B B V

� � � �

the magnetic field can be 
expressed as gradient of 
a scalalr potential !

= ⋅V(x,z) g xz

equipotential lines (i.e. the surface of the iron contour) = hyperbolas

calculation of the field:
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Example of a sparated function 
machine: heavy ion storage ring TSR

calculation of the quadrupole field:

normalised quadrupole strength:
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remember: 
normalised dipole strength:

gradient of a 
quadrupole field:
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„Synchrotron Magnet“:
combines the homogeneous field of a dipole with a quadrupole gradient

potential: 0  V(x,z)

    

B z g xz= − + ⋅

advantage: lattice with high 
compactness

disadvantage: strong correlation of momentum
(via dipole field) and beam optics. 
� poor  flexibility 

Nota bene: Synchrotron magnet can be considered as a shifted quadrupole lens
„off center quadrupole“.

z

V
B gx

B
n g k

x B B

ρ ρ
ρ

∂
= = − +

∂

∂
= ⋅ = =

∂

z 0

2

0 0

B
z

    

field index:



III.) The equation of motion

Pre-requisites: * consider particles with ideal momentum or at least with only small 
momentum error

* neglect terms of second order in x,z,and ∆p/p� linear approximation
* independent variable “s”,

write derivative with respect to s as  …´

ρ

dsx

dl

design orbit

particle trajectoryθ0 angle of ideal orbit
θ angle of particle trajectory
x´     derivative of particle amplitude with resp. to s

0
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For any circular orbit path we get:
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... quite clear, but what is d θ/ds ?
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as for any circular 
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putting the term (b) and (c) into the expression for the angle dθ …
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and keep only first order terms in x, z, ∆p !!
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... do you still remember the beginning ? 
we were looking for  ... 
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vertical direction:
* no bending (... in general)  � no  1/ρ2 term
* vertical gradient:

* Lorentz force gets a “-”:    F=q (v x B)
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IV.) Solution of trajectory equations

2

1 1 p
x ( k( s))x

( s) ( s) pρ ρ

∆
′′ + − =

define:
21K(s) k( s) ( s)ρ= − +

horizontal plane:

1 p
x K( s) * x

pρ

∆
′′ + =

2 Problems:     * inhomogeneous equation � set for the moment ∆p/p=0
i.e. consider particles of ideal momentum

* K(s) is not constant but varies as a function of the azimuth
K(s) is a “time dependent” restoring force
� the differential equation can only be solved numerically 

K(s) is prescribed by the storage ring design:
given by the magnet parameters  

remember: hard edge model:
K = const within a magnet

SPS Lattice



0x K * x′′ + =
differential equation for the transverse oscillation of a 
particle in a magnetic element of the storage ring.
(... harmonic oscillator)

* second order     � two independent solutions, 
* linear in x              any linear combination of these „principal solutions“ will again be 

a solution.   

1
C(s) cos( K s) , S( s ) sin( K s)

K
= =

with the initial conditions: 0 1 0 0

0 0 0 1

C( ) , S( )

C ( ) , S ( )

= =

′ ′= =

Arbitrary solution of any particle:

0 0x( s) x C( s) x S( s)′= ⋅ + ⋅

for K < 0:

1
C(s) cosh( Ks) , S( s) sinh( K s)

K
= =

we choose for K > 0:



C( s) S( s)
M

C ( s) S ( s )

 
  =   ′ ′   

Matrix formalism for beam transfer in a lattice:

where

horizontal focusing quadrupole: K > 0

1
cos K l sin K l

KM

K sin K l cos K l

 
    =    −   

HERA standard type 
quadrupole lens

0 0

0 0

x( s ) x( s )x( s) x C( s) x S( s )
M *

x ( s ) x ( s )x ( s ) x C ( s) x S ( s )

    ′= ⋅ + ⋅         ⇒ =       ′ ′′ ′ ′ ′= ⋅ + ⋅           

... depending on the value of K we can establish a transfer matrix for any (linear) 
lattice element in the ring.
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 
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vertical  focusing quadrupole: K < 0

drift space: K = 0 1

0 1

l

M

 
  =     

particle motion in the vertical plane:

in general storage rings are built in the horizontal plane.
no vertical bending dipoles � 1 0ρ =

define: K k=
� same matrices as in x-plane.

!     with the assumptions made, the motion in the horizontal and vertical planes are 
independent  „ ... the particle motion in x & z is uncoupled“  

!! dont´t forget the inhomogeneous equation



focusing lens 

dipole magnet

defocusing lens 

transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

etotal QF D QD B nd D*.....M M * M * M * M * M=

x(s)

s

K. Wille

2 1

s2,s1

s s

x x

M( )*
x x

   
      =   ′ ′         

0

typical values 
in a strong 
foc. machine:
x ≈ mm, x´ ≤ mrad



Dispersion:

1 p
x K( s) * x

pρ

∆
′′ + =inhomogeneous equation

general solution = complete solution of the homogeneous equation
+ particular solution of inhomogeneous equation

h i
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initial conditions:  0 0 0D D ′= =



Dispersion:

for convenience:
expand the matrix formalism:

0s s

x xC S D
p

x xC S Dp

         ∆         = ⋅ +      ′ ′   ′ ′ ′                  

or even more convenient

0

0 0 1

s s

x C S D x

x C S D x

p p

p p

   
                          ′ ′ ′ ′ ′= ⋅                 ∆ ∆                        

Determine the Dispersion from the lattice parameters:

remember: C and S are independent solutions 
of the equation of motion  � the Wronski determinant 0

C S

W
C S

= ≠
′ ′

even more, we get: 
dW d

(CS SC ) CS SC
ds ds

′ ′ ′′ ′′= − = −

0K(CS SC)= − − =



Dispersion:

W const.→ = choose the position s = s0  where 
0 0

0 0

1 0

0 1

C , C

S , S

′= =

′= =

1W =

the dispersion trajectory can be calculated from the cosine and sinelike solutions: 

0 0

1 1
s s

s s

D(s) S(s) C(s)ds C(s) S(s)ds
(s) (s)ρ ρ
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s s
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proof: D(s) has to fulfil the equation of motion

0 0

1 1 1
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s s
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 
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1
0

0

0 0 1

Qfoc

cos K l sin K l
K

M K sin K l cos K l

 
       =            

1 0

0 0

, K k

D(s) , D (s)

ρ = = −

′→ = =

Example:

drift:

foc. Quadrupole:

dipole sector magnet: design orbit

angle at entrance and exit: 90°



dipole sector magnet:
2

1 0

1

const, k

K /

ρ

ρ

= =

=
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l l
cos sin

M
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sin cos

ρ
ρ ρ

ρ ρ ρ

 
 ⋅   =     −    

2x2 matrix

0 0
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s s

s s

D(s) S(s) C(s)ds C(s) S(s)ds
(s) (s)ρ ρ

= −∫ ∫� � � �
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1 1
l l

l s l s
D(s) sin cos ds cos sin dsρ ρ

ρ ρ ρ ρ ρ ρ
= ⋅ ⋅ − ⋅ ⋅∫ ∫

2 1
l l l

D(s) sin cos cosρ ρ
ρ ρ ρ

 
 = ⋅ + ⋅ − ⋅
 
 

1
l

D(s) ( cos )ρ
ρ

= −

l
D (s) sin )

ρ
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dipole sector magnet: 1

1

0 0 1

Qfoc

l l l
cos sin ( cos )

l l l
M sin cos sin

ρ ρ
ρ ρ ρ

ρ ρ ρ ρ

 
 −     −  =            

Example: HERA Interaction region

start value: 0 0 0D D′= =

dispersion is generated as soon as we enter the dipole magnets
where 1/ρ ≠ 0

typical values:   ∆p/p ≈10-3

D ≈ 1…2m
xi = D* ∆p/p ≈1-2 mm 



Remarks on Magnet Matrices:

1.) thin lens approximation:

cos k l sin k l
k

M

k sin k l cos k l

 
    =    −   

1

matrix of a quadrupole lens

in many practical cases we have the situation:

q

q

f l
kl

= >>
1

... focal length of the lens is much bigger than the length of the magnet

0l → kl const=limes: while keeping :

1 0

1
1x

M

f

 
   =       

1 0

1
1z

M

f

 
   =  −     

... usefull for fast (and in large machines still quite accurate)  „back on the envelope 
calculations“ ... and for the guided studies !



3.) edge focusing:  ... dipole „box-magnets“

Ψ Ψ

particle at distance x0  to the design orbit sees a „shorter magnetic field“

x0

∆l0l x tan ψ∆ = ⋅

error in the bending angle of the dipole

l tan
x

ψ
α

ρ ρ

∆
∆ = = ⋅0

�corresponds to a horizontal defocusing effect 
... in the approximation of ∆l = small 

x x

Mtan tan
x x x

ψ ψ

ρ ρ

=        ⇒ =  ′ ′  = +       

0

0 0

1 0

1

* horizontal plane:



3.) edge focusing: vertical plane

fringe field effect at the edge of a dipole1 0

1z
M tan ψ

ρ

 
   ≈ −      

particle trajectory crosses the field lines at the dipole edge.
�horizontal field component

vertical focusing effect

for purists only: vertical edge effect depends on the exact form of the dipole fringe field

z
M b tan

cos

ψ

ρ ψ ρ

 
   ≈   −    2

1 0

1
1

6
where b = distance over which the 

fringe field drops to zero

Bx

Bz



Question: what will happen, if the particle performs a second turn ? 

x
... or a third one or ... 1010 turns

Answer: ... will be discussed in the evening having a good glass of red wine
... or tomorrow in the next lecture.

0

s



V.) Résumé: beam rigidity: pB qρ⋅ =

bending strength of a dipole:
. B (T)

m
p(GeV / c)ρ

−

⋅
  =  

1 00 29981

focusing strength of a quadrupole:
. g

k m
p(GeV / c)

−

⋅
  =  

2 0 2998

r

nI.
k m

p(GeV / c) a

µ
−  =  

2 0
2

20 2998

focal length of a quadrupole:
q

f
k l

=

⋅

1

equation of motion:
p

x Kx
pρ

∆
′′ + =

1

matrix of a foc. quadrupole:
s s
x M x= ⋅2 1

1
cos K l sin K l

K
M

K sin K l cos K l

 
    =    −   





VI.) Appendix:     Equation of motion in the case of weak focusing 

restoring forces are linear in the deviations x, z  from the ideal orbit. Example: harmonic oscillation 
of a spring

=−
r
F c*xrestoring force:

equation of motion:

in our case: 1 1
ρ ρ

=− − = − −
r

Bev Bemv
F ( n)x ( n)x

m

ω0 , the angular revolution- (or cyclotron- ) frequency is obtained from:

2

2
0

0

1
ρ ρ

ω

ω ρ

= → = 
=− −

= = 


r

mv mvevB eB
F ( n)*x

eBv/ m

00

                                         

ω

ω

+ = → =

=

x c*x x(t) x *cos t

c/m

��

0 1ω ω= = −c/m * n

As 0 < n < 1 is required for stability the frequency of the transverse oscillations ω is smaller than 
the revolution frequency ω0.

x



0

E

E
B j

t

B
E

t

B

ρ

δ

δ

δ

δ

∇⋅ =

∇× = +

∇× =−

∇⋅ =

� �

�

� � �

�

� �

� �

and in matter

0

D

D
H j

t

B
E

t

B

ρ

δ

δ

δ

δ

∇⋅ =

∇× = +

∇× =−

∇⋅ =

� �

�

� � �

�

� �

� �

Maxwell‘s equations

in vacuum

Stokes integral theorem: ( )∇× =∫ ∫
S C

A nda Adl

� �� �
�

�

Gauß´ integral theorem:
3

∇⋅ =∫ ∫
V S

Adx Anda

� ��
�

where A

V

S

�

Vectorfield,

Volume

Surface surrounding the Volume V

da

n
�

Surface Element of the Surface S

Normvector on the Surface S



Solution of the equation of motion:

0x kx′′ + = k>0 � foc. quadrupole in the horizontal plane

Ansatz:

1 2x(t) a sin( t) a cos( t)ω ω= +

with the derivatives: 1 2x (t) a cos( t) a sin( t)ω ω ω ω′ = −

2 2
1 2

2

x (t) a sin( t) a cos( t)

x(t)

ω ω ω ω

ω

′′ = − −

= −

and we get for the differential equation:

1 2x(t) a cos( kt) a sin( kt)= + with kω =

the constants a1 and a2 are determined by boundary (i.e. initial) conditions:

0 0 0                          0 ,      0  

                                     

t x( ) x x ( ) x′ ′= = =
at we require

1 2 1 0

0
1 2 2

0 0 0

0 0 0

                                                                  

x( ) a cos( ) a sin( ) a x

x
x ( ) a k sin( ) a k cos( ) a

k

= + → =

′
′ = − + → =



0
0

0 0

x
x(t) x cos( kt) sin( kt)

k

x (t) x k sin( kt) x cos( kt)

′
= +

′ ′= − +

or expressed for convenience in matrix form:

0

0

1

                                     

s

x x

M * ,
x x

cos kt sin kt
kM

k sin kt cos kt

   
      =   ′ ′         

 
   =    −   


