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Beam Beam CoolingCooling

• Introduction to cooling, temperature, phase

space and Liouville

• Stochastic cooling

• Electron cooling

• Laser cooling

• Radiation damping

• Ionisation and other cooling
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Beam Beam coolingcooling

• Emphasis on physical ideas (description and 
understanding)

• Will not review existing all facilities and 
performances

• Will not derive cooling time, but give crude
formula and comment on important
dependencies
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Beam Beam coolingcooling

• Since beamcooling is ”slow”, it is only
effective in storage rings;

• however, ionisation and ”stochastic
cooling” has been or will be used in 
beamlines for muons

What is cooling? What is Temperature?

IntroductionIntroduction
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Y is the velocity relative to the reference particle
moving with the average ion velocity.
Temperature is a measure of the disordered motion.
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My old thermodynamics teacher

• How do you measure the
temperature og an ant?

What is cooling? What is Temperature?

IntroductionIntroduction
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Y is the velocity relative to the reference particle
moving with the average ion velocity.
Temperature is a measure of the disordered motion.

In an accelerator
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WhyWhy beam beam coolingcooling??

WhyWhy beam beam coolingcooling??

Improve beam quality
• beam size, emittance
• energy spread
• intensity of beam, accumulation, stacking
• lifetime of beam

Counteract degradation of beam quality
due to interaction of ions with
• other ions (intrabeam scattering)
• rest-gas (internal targets)
• non-ideal fields, resonances, instabilities

injection errors
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StackingStacking by by coolingcooling
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StackingStacking by by coolingcooling 22
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ASTRID SR source:
~200 mA accumulated
from many injections
of ~5 mA

Fermilab antiproton
accumulator
stacking for 1 hour

108/2 sec pbar at 8 GeV

injection stack tail core

shutter
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PhasePhase spacespace and and LiouvilleLiouville
/LRXYLOOH� For hamiltonian systems, the phase space density

is constant (when measured along a trajectory)

The phase space volume (emittance) is conserved

T

S

³  constantSGT

Quadrupole focusing
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Often the two transverse and the longitudinal degrees of freedom
are decoupled

PhasePhase spacespace, , LiouvilleLiouville and and coolingcooling

/LRXYLOOHV WKHRUHP means that cooling is not possible
for Hamiltonian systems, that is systems with forces
that can be derived from potentials.
In addition particles cannot be injected into already
filled areas of Phase space.
All you can do is to change the form of phase space.

However, with velocity-dependent forces
drag, friction (dissipative) forces

electron, radiation, Laser, ionisation cooling

cooling is indeed possible!!
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CoffeeCoffee, , creamcream, , LiouvilleLiouville and and 
StochasticStochastic coolingcooling

StochasticStochastic coolingcooling principleprinciple
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StochasticStochastic coolingcooling
/LRXYLOOH: Cooling is not possible with electromagnetic forces
deflecting the particles (continous fluid, og 1=f).
When single particles can be observed, and a corresponding
correction applied, cooling is possible!
This is the secret of stochastic cooling!

pick-up kicker
1=108, V=5mm
V/�1=0.5Pm

In reality :< f

StochasticStochastic coolingcooling
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StochasticStochastic coolingcooling exerciseexercise

1) Ask for 5 random numbers with <[>=0 and V=1
2) Find actual <[> (in general <[>z0)
3) Subtract error in mean to restore mean to zero
4) Calculate new V
5) Goto 1)
6) Watch V as function of time
7) What is the cooling time?
8) Include electronical noise!
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CoolingCooling time 2time 2

W v 1

Decrease gain as cooling proceeds

Good mixing, * = 1, by designing storage ring so

K=w('7/7)/w('S/S) is large. However small mixing PUoK

Large bandwidth (:> GHz, 1s~10-31)

Weak dependence on energy

= dependence in X
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StochasticStochastic coolingcooling

Betatron cooling: 2 systems (hor. and vert.)
dist. PU o kicker = odd number of O/4

Momentum cooling:
acc. gap instead of transverse kicker

(L)  PU in high-dispersion region '[/[=' 'S/S
(LL) detect 'I/I=K 'S/S�and correct 'S/S

Stochastic cooling facilities:
ISR (1977), ICE, AA, AC, LEAR, AD @ CERN
Fermilab
TARN
COSY, GSI
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FNAL antiproton sourceFNAL antiproton source

Fermilab antiproton
accumulator
stacking for 1 hour

108/2 sec pbar at 8 GeV

injection stack tail core

shutter

'S/S ('I/I)

StochasticStochastic CoolingCooling

AD at CERN

'S/S ('I/I)
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Electron Electron coolingcooling
Ions

e-gun (Te~0.2 eV) collector

~108/cm3

Laboratory frame )(     frame particle
,
Y

Electron Electron CoolingCooling

NAP-M ring
at INP, 1974,
68 MeV p
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ASTRID electron cooler

Electron Electron coolingcooling 22

Initially
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Electron Electron coolingcooling timetime
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Electron Electron coolingcooling

Electron cooling at AD

LEAR, ICE, AD @ CERN

CRYRING, CELSIUS

TSR, COSY, SIS, ESR

IUCF, Fermilab

TARN, ..

ASTRID

LEAR/AD electron LEAR/AD electron coolercooler
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MUSES electron MUSES electron coolercooler

CRYRING electron CRYRING electron coolercooler
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SIS electron SIS electron coolercooler

2A

Mod. to simple Mod. to simple descriptiondescription
1) Flattened distribution due to acceleration
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VirtuesVirtues ofof electron electron coolingcooling
Versatile cooling technique
Longitudinal and transverse cooling
Cooling times W|0.1-1sec$/42

7// << 0.1 eV
7
A
| 0.1 eV

in addition: adiabatic expansion 7 // v %

Laser Laser coolingcooling
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Kick from one photon
absorption-emission

1s2p

1s2s

5485Å
(2.3 eV) W=42ns
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Laser Laser coolingcooling in in 
ASTRIDASTRID

Laser Laser coolingcooling

Virtues of laser cooling:

Laser cooling is fast

However:

Only effective for longitudinal cooling

Not versatile: Li+, Be+, Mg+, …
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Radiation Radiation dampingdamping

In principle: any charged particle
in practise: only electrons/positrons
since W|(/(80/70)

RF

Vertical betatron cooling
Horisontal: dispersion!
Longitudinal: finite energy quanta

(for details,
see lectures by L. Rivkin)

Ionisation Ionisation coolingcooling
Friction force
Slowing down in matter
Not hadrons due to large inelastic cross section
Not electrons due to short radiation length

Can only be used for in P in P-collider/ Q-factory

Q’s produced by decayingP’s
P’s produced from decayingS’s
S’s produced by p’s on target

SinceP’s do not live forever (2.2 Ps)
cooling has to be fast.

Also emittances are very large!

Y) �v
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Ionisation Ionisation coolingcooling principleprinciple

d(/d[ d(/d[ d(/d[ d(/d[

R   F              R   F R   F              R   F

Transverse cooling:
muons lose energy by dE/dx and longitudinal momentum is
replaced by RF

To minimize heating from Coulomb scattering:
zSmall E

A
(high-field solenoids)

zLarge LR (low-= absorber): Liquid H2

Ionisation Ionisation energyenergy coolingcooling

Ionisation energy cooling using a wedge and dispersion

R F
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possiblepossible QQ--factoryfactory at CERNat CERN

FNALFNAL
QQ--

factoryfactory
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MICE at RALMICE at RAL

OtherOther coolingcooling methodsmethods

Stimulated radiation cooling

Radiative cooling
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ConclusionsConclusions
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