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field imperfections and normalized field errors

perturbation treatment
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Introduction: Damped Harmonic Oscillator
equation of motion for a damped harmonic oscillator:
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Introduction: Driven Oscillators
an external driving force can ‘pump’ energy into the system:
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stationary solution:
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where ‘ω’ is the driving angular frequency!
and W(ω) can become large for certain frequencies!



Introduction: Driven Oscillators

stationary solution

)](cos[)()( ωαωω −⋅⋅= tWtwst

stationary solution follows the frequency of the driving 
force:
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oscillation amplitude can become large for weak damping



Introduction: Pulsed Driven Resonances Example
higher harmonics:

example of a bridge:

2nd harmonic: 3nd harmonic: 5nd harmonic:
[Bob Barrett; Messiah College]

peak amplitude depends on the excitation frequency and damping



Introduction: Instabilities
resonance catastrophe without damping:
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Tacoma Narrow bridge
1940

excitation by strong wind on the Eigenfrequencies



Smooth Approximation: Resonances in 
Accelerators

revolution frequency:
periodic kick

excitation with frev

(ωrev = 2π frev)F

betatron oscillations:
Eigenfrequency: ω0 = 2π fβ

F

Q = ω0 / ωrev

driven oscillator

weak or no damping!
(synchrotron radiation damping (single particle) or Landau damping distributions)



Smooth Approximation: Free Parameter

co-moving coordinate system:

choose the longitudinal
coordinate as the free
parameter for the equations
of motion
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Smooth Approximation: Equation of Motion I
Smooth approximation for Hills equation:
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K(s) = const

(constant β-function and phase advance along the storage ring)
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(Q is the number of oscillations during one revolution)

perturbation of Hills equation:
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charged particle in a magnetic field: 



Field Imperfections: Origins for Perturbations

linear magnet imperfections: derivation from the design dipole 
and quadrupole fields due to powering and alignment errors

time varying fields: feedback systems (damper) and wake 
fields due to collective effects (wall currents)

non-linear magnets: sextupole magnets for chromaticity 
correction and octupole magnets for Landau damping

beam-beam interactions: strongly non-linear field! 

non-linear magnetic field imperfections: particularly difficult 
to control for super conducting magnets where the field quality 
is entirely determined by the coil winding accuracy



Field Imperfections: Localized Perturbation

periodic delta function:
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equation of motion for a single perturbation in the storage ring:
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infinite number of driving frequencies



Field Imperfections: Constant Dipole
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equation of motion for single kick:
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avoid integer tunes!

remember the example of a single dipole imperfection 
from the ‘Linear Imperfection’ lecture yesterday!



Field Imperfections: Constant Quadrupole

equations of motion: )()()( 1
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change of tune but no amplitude growth due to resonance
excitations!



Field Imperfections: Single Quadrupole Perturbation

assume y = 0 and Bx = 0:
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avoid half integer tunes plus resonance width from tune modulation!

exact solution: variation of constants or MAP approach 
see the lecture yesterday



Field Imperfections: Time Varying Dipole Perturbation

time varying perturbation:
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resonance condition:
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avoid excitation on the betatron frequency!

(the integer multiple of the revolution frequency corresponds to the modes of the bridge 
in the introduction example)



Field Imperfections: Several Bunches
:);cos()( revkickkick tBtF ωωω ≈⋅⋅=

FF

machine circumference

:2);cos()( revkickkick tBtF ωωω ⋅≈⋅⋅=

FF

higher modes analogous to bridge illustration



Field Imperfections: Dipole Magnets
dipole magnet designs:

LEP dipole magnet: LHC dipole magnet:

conventional magnet design
relying on pole face accuracy
of a Ferromagnetic Yoke

air coil magnet design relying
on precise current distribution



Field Imperfections: Super Conducting Magnets
time varying field errors in super conducting magnets

Luca Bottura CERN, AT-MAS
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Field Imperfections: Multipole Expansion
Taylor expansion of the magnetic field:
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Field Imperfections: Multipole Illustration
upright and skew field errors

upright: skew:
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Field Imperfections: Multipole Illustrations
quadrupole and sextupole magnets

LEP Sextupole

ISR quadrupole



Perturbation Treatment: Resonance Condition
equations of motion: (nth order Polynomial in x and y for nth order multipole)

perturbation treatment:
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Perturbation Treatment: Tune Diagram I
resonance condition:

avoid rational tune values!

tune diagram:
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there are resonances
everywhere!
(the rational numbers
lie dens within the
real number)
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up to 11 order (p+l <12)
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Perturbation Treatment: Tune Diagram II
regions with few resonances:

avoid low order resonances!

coupling resonance:
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regions without low
order resonances
are relatively small! 0.2
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< 12th order for a
proton beam
without damping

< 3rd 5th order for
electron beams with
damping

7th11th4th & 8th9th



Perturbation Treatment: Single Sextupole Perturbation
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Perturbation Treatment: Sextupole Perturbation

resonance conditions:
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avoid integer and r/3 tunes!

rQ

rQQrQ

x
Qr

x
Qr

xox

x

x

=⎯⎯⎯ →⎯

=⎯⎯⎯ →⎯±⋅=
+

−

0,
2

0,
2

0,,

0,

0, 3/)2(22 ππ

perturbation treatment:

contrary to the previous examples no exact solution exist!
this is a consequence of the non-linear perturbation

(remember the 3 body problem?)

graphic tools for analyzing the particle motion



Poincare Section: Linear Motion
unperturbed solution:
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linear motion is described by 
a simple rotation x

consecutive intersections lie
on closed curves



Poincare Section: Definition

Poincare Section:
record the particle
coordinates at one
location in the
storage ring
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Poincare Section: Non-Linear Motion
momentum change due to perturbation: ds

pv
sFx ⋅
⋅

=′∆ ∫
)(

n
n xlk

n
x ⋅⋅=′∆

!
1single n-pole kick:

phase space portrait with single sextupole: 0/ωx′

R+∆R

02 Qπ

2
22

1 xlkx ⋅⋅=′∆

sextupole kick changes the 
amplitude and the phase 
advance per turn!

x

2xQturn ∝∆



Poincare Section: Stability?
instability can be fixed by ‘detuning’:

overall stability depends on the balance between amplitude
increase per turn and tune change per turn:

)(xQturn∆ motion moves eventually off resonance

)(xRturn∆ motion becomes unstable

sextupole kick:

amplitudes increases faster then the tune can change

overall instability!



Poincare Section: Illustration of Topology

Poincare section:
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regular motionsmall amplitudes:

large amplitudes: instability & particle loss
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fixed points and seperatrix border between atable and unstable
motion chaotic motion



Poincare Section: Simulatiosn for a Sextupole Perturbation

Poincare Section right after
the sextupole kick

x’

xfor large amplitudes and near the separatrix the intersections
fill areas in the Poincare Section chaotic motion; 

no analytical solution exist!

separatrix location depends on
the tune distance from the exact
resonance condition (Q < n/3)

for small amplitudes the
intersections still lie on closed
curves regular motion!



Slow Extraction With Sextupoles

Septum magnet:

x

0/ωx′

adjust tune closer to the resonance condition during extraction
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the region of stable motion shrinks and more particles reach the septum 



Stabilization of Resonances
instability can be fixed by stronger ‘detuning’:

if the phase advance per turn changes uniformly with 
increasing R the motion moves off resonance and stabilizes
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Stabilization of Resonances

resonance stability for octupole: x’

x

an octupole perturbation generates 
phase independent detuning and 
amplitude growth of the same 
order

amplitude growth and detuning
are balanced and the
overall motion is stable!

this is not generally true in case of several resonance driving
terms and coupling between the horizontal and vertical motion!



Chaotic Motion
octupole + sextupole perturbation: x’

x

the interference of the octupole
and sextupole perturbations
generate additional resonances

additional island chains in 
the Poincare Section!

intersections near the resonances 
lie no longer on closed curves 
local chaotic motion around 
the separatrix & instabilities 

slow amplitude growth (Arnold diffusion)

neighboring resonance islands start to ‘overlap’ for large 
amplitudes global chaos & fast instabilities



Chaotic Motion
‘Russian Doll’ effect: x’

x

x’

x

magnifying sections of the Poincare Section reveals always the same
pattern on a finer scale renormalization theory!



Summary

field imperfections drive resonances

(three body problem of Sun, Earth and Jupiter)

higher order than quadrupole field imperfections generate 
non-linear equations of motion (no closed analytical solution)

solutions only via perturbation treatment

Poincare Section as a graphical tool for analyzing the stability

slow extraction as example of resonance application in accelerator

island chains as signature for non-linear resonances

island overlap as indicator for globally chaotic & unstable motion
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