Resonances

Introduction: driven oscillators and resonance condition
smooth approximation for motion in accelerators

field imperfections and normalized field errors
perturbation treatment

Poincare section

stabilization via amplitude dependent tune changes
sextupole perturbation & slow extraction

chaotic particle motion



Introduction: Damped Harmonic Oscillator

B equation of motion for a damped harmonic oscillator:
LW(t)+ @y Q- EW(t) + @, -W(t) =0

Q Is the damping coefficient

—— (amplitude decreases with time)

o, Is the Eigenfrequency of the HO

B example: weight on a spring (Q = o)

K
% Sw(t) +k-w(t) =0 —w(t) =a-sin(Vk t+¢)



Introduction: Driven Oscillators

B an external driving force can ‘pump’ energy into the system:
d2 -1 d 2 F
FW(O) + o, Q- FwW(t)+a, -W(t) = H-cos(a)-t)

B general solution:
) W(t) = W, (t) + W, (t)

B stationary solution:

W, (t) =W (w)-cos[w -t —a(w)]

- where ‘o’ Is the driving angular frequency!
and W(w) can become large for certain frequencies!



Introduction: Driven Oscillators

B stationary solution

stationary solution follows the frequency of the driving
force:

W, (t) =W (w)-cos|w -t —a(w)]

W(w) ! o) !

Q>1/2

/2

@

@ 0)

®

Bl oscillation amplitude can become large for weak damping



Introduction: Pulsed Driven Resonances Example

B higher harmonics:

example of a bridge:
[ 1] P g [Bob Barrett; Messiah College]

2”0' harmoniC' 3”0' harmonlc 5”0' harmoniC'
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B peak amplitude depends on the excitation frequency and damping



Introduction: Instabilities

Bl resonance catastrophe without damping:

W(w)=W(0)- 1
@) =10 J[l—(ﬂ)zlh(JL)Z

o Qa)0

B weak damping: resonance condition: = @

|
— 8

Tacoma Narrow bridge
1940

excitation by strong wind on the Eigenfrequencies



Smooth Approximation: Resonances in
Accelerators

B revolution frequency:

— periodic Kick
@ — excitation with f,

i F ((Drev =27 1:rev)

B Dbetatron oscillations: :
Eigenfrequency: w, = 2r f,

\/ —_— /
Q = Wo / Wy
— driven oscillator
ﬁ F —— weak or no damping!

(synchrotron radiation damping (single particle) or Landau damping distributions)



Smooth Approximation: Free Parameter

B co-moving coordinate system:

=» choose the longitudinal
y coordinate as the free
A\ parameter for the equations
S

of motion
X
B cquations of motion:
d __ds d o ds _
dt — dt "ds with: dt = Vv



Smooth Approximation: Equation of Motion |

B Smooth approximation for Hills equation:

K(s) = const d )

ds?

45 42 w(s)+K(s)-w(s) =0 w(s) +a@,” -w(s) =0

(constant B-function and phase advance along the storage ring)

w(s) = A-cos(aw, - S+ ¢) w,=27-Q,/L
(Q is the number of oscillations during one revolution)

B perturbation of Hills equation:
42 w(s) +@,” -W(s) = F (w(s),s) /(v p)

In the following the force term will be the Lorenz force of a I
charged particle in a magnetic field: F = gq-VX B



Field Imperfections: Origins for Perturbations

B linear magnet imperfections: derivation from the design dipole
and quadrupole fields due to powering and alignment errors

B time varying fields: feedback systems (damper) and wake
fields due to collective effects (wall currents)

non-linear magnets: sextupole magnets for chromaticity
correction and octupole magnets for Landau damping

beam-beam interactions: strongly non-linear field!

non-linear magnetic field imperfections: particularly difficult
to control for super conducting magnets where the field quality
IS entirely determined by the coil winding accuracy



Field Imperfections: Localized Perturbation

B periodic delta function:

otherwise

1 for ‘s’ = s,
0, (s—5s,) = and §5L(s—so)ds=1

B cquation of motion for a single perturbation in the storage ring:

éli—;vv(s)mo2 W(s) =8 (s—5,)-1-F(w,s)/(v- p)

Fourier expansion of the periodic delta function:

Ao w(s)+ o, w(s) =+ > cos(r-2-5/L) F (w,5) /(v- p)

F=—o0

—— Infinite number of driving frequencies



Field Imperfections: Constant Dipole

. : . F VxB
B normalized field error:  _© _ q- a viB k,=0q-B/p

V-p V-p

B cquation of motion for single Kick:

. 4 2w(s)—|—a)o -W(S) TOZcos(r 277-s/L)

=—00

L . wg=27-QylL .
— . resonance condition: Wy =1-2r/L—"""—"=>Q,=r

— | avoid integer tunes!

—— remember the example of a single dipole imperfection
from the ‘Linear Imperfection’ lecture yesterday!



Field Imperfections: Constant Quadrupole

equations of motion:
B e 9 X(8)+ 0, X(5) =k, X(5)

y(s)=0

with: k; = p
X

x(s)+(a) —k,)-x(s)=0

d32

— change of tune but no amplitude growth due to resonance
excitations!



Field Imperfections: Single Quadrupole Perturbation

Bl assumey=0andB, =0:

F(s)/(v-p)=0_(s—5;)-1-K; - X

92 X(5) + @, - X(5) = riocos(Zﬂ r-s/L)-X(s)

B resonance condition: w,,=r27lLtaw, @0=27-Qu/L >Q, =Nn/2

avold half integer tunes plus resonance width from tune modulation!

Bl cxact solution: variation of constants or MAP approach
=>» see the lecture yesterday



Field Imperfections: Time Varying Dipole Perturbation

B time varying perturbation:
F(t)=F,-cos@,, -t)—=—>F, -cos(Zﬂ-%-s/ L)/(v-p)

: C?SZZ W(S) + 6002 : W(S) IFO ZCOS(Z” [r T Wik /wrev] s/ L) /(V p)

[=—00

resonance condition:

=27-Qy/L
rev)/L D=2 > k|ck rev (QO r)

—— | avoid excitation on the betatron frequency!

(the integer multiple of the revolution frequency corresponds to the modes of the bridge
In the introduction example)



Field Imperfections: Several Bunches
s (t) = B-CoS(@yigy -1); @i = @y

i{/\\\\/“

machine circumference

- F (t) — B | COs(a)kick t)1 wkick ~ 2 ) a)rev

ANEIVAN
Y A

—> higher modes analogous to bridge illustration




Field Imperfections: Dipole Magnets

B dipole magnet designs:

LEP dipole magnet: LHC dipole magnet:
conventional magnet design air coil magnet design relying
relying on pole face accuracy on precise current distribution

of a Ferromagnetic Yoke

CROSS SECTION OF THE DIPOLE MAGNET WITH THE VACUUM CHAMBER
Pre:rressr'ng __Support Thermal
/ rs /o

/" rod




Field Imperfections: Super Conducting Magnets
B time varying field errors in super conducting magnets

Luca Bottura CERN, AT-MAS

11743A




Field Imperfections: Multipole Expansion
B Taylor expansion of the magnetic field:

- - ] n @n+1B
By+|Bx :Z% fn'(X‘Hy) with: f = y
n=0

n 5Xn+1

multipole order | B,

dipole 0

sextupole 2

y Lo
fo-(Byx®—y°) | 1. f,-(x°=3xy?)

2

0
quadrupole | 1 f-y

f,-x
octupole 3 %

B normalized multipole gradients:

n+1

(vp) "

F(s)/(v-p) =2®B) :%-fn k =0.3.n [k ]=




Field Imperfections: Multipole Illustration
B upright and skew field errors

upright: skew:

n=0

) 1
W
E;

n=1
i .
%

(3



Field Imperfections: Multipole Illustrations
B quadrupole and sextupole magnets

LEP Sextupole

ISR quadrupole




Perturbation Treatment: Resonance Condition

Bl equations of motion: (nt order Polynomial in x and y for nt" order multipole)

Szw(s)+co0 w(s)=¢- > a,, X -y"-cos(2z-r-s/L)

|+m<n,
r

d

: with:  W=X,Y
B perturbation treatment:

X=X, +&- X +& X, +....+0(e") a)ozz—ﬂQX,y

with:  X,(8) =X, -€0s(27-Q, o -S/L+¢,,) [same for “y(s)’]
2 2w T ~
352W +a)0 W, =& ZanerOS(T°[I QX,O+mQy,O+r]-s)

<Im<m



Perturbation Treatment: Tune Diagram |

B resonance condition:

—_— |.QX_|_m.Qy:r

B tune diagram: Q,

up to 11 order (p+l <12)

—

there are resonances
everywhere!

(the rational numbers
lie dens within the
real number)

1

0.8

0.6

0.4

N (I Q +m- Q +r)__ Qxy

avold rational tune values!

N
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Perturbation Treatment: Tune Diagram ||

B regions with few resonances:

1-Q,+m-Q, =T avoid low order resonances!
gth 4th & gth 11th 7t
— < 12" order for a 03 |
proton beam Qy

without damping 028 @ﬁ
—, < 3rd & 5th grder for 0.6 ﬁ '

electron beams with

damping o
B coupling resonance:
0.28

regions without low 022 |
order resonances
are relatively small! 0.2 , |

0.2 0.22 0.24 0.26

0.3

Q,



Perturbation Treatment: Single Sextupole Perturbation

B perturbed equations of motion: F(s)/(v- p) :%.5L (s—s,)-lk, x°

> 3322x(s)+a)0 xl(s):%-lkz-xoz%Zcos(Zﬂ-r-s/L)

with: XO (S) = A- COS(a)o,x S+ ¢O) and a)o,x =27 - QX,O /L

92 5, (8)+ (27Qy0 L) X, (5) = o+ A7 icos(Zﬂrs/L)

o0

8—1 Z cos(2z -[r+2Q,,]1-s/L)



Perturbation Treatment: Sextupole Perturbation

I resonance conditions:
— 27Q,, =27 -(r)——>Q, =T

27Q,, =27-(r+2Q, ) —=225Q,,=r/3

r+2Qy o . .
/7 X,O - r

— avold integer and r/3 tunes!

B perturbation treatment:

contrary to the previous examples no exact solution exist!
this 1s a consequence of the non-linear perturbation
(remember the 3 body problem?)

=>» graphic tools for analyzing the particle motion




Poincare Section: Linear Motion

B unperturbed solution:

Xx(s)=+R-cos(g)  with i¢ = ),

ds
d

X'=—X=—-+R-m,-sin(g)

ds

B phase space portrait:

>

the motion lies on an ellipse

>

linear motion is described by

t X' w,

a simple rotation

=» consecutive Intersections lie
on closed curves

N




Poincare Section: Definition

B Poincare Section:

XL - record the particle
><\ -
K coordinates at one
y % X location in the
s / — | storage ring
« t X'/ o,
3

B resonance in the Poincare section:

-> A¢turn =2r- Q %

fixed point condition: Q = n/r 2

points are mapped onto themselves after ‘r’ turns



Poincare Section: Non-Linear Motion

B momentum change due to perturbation:

B single n-pole kick:

Bl phase space portrait with single sextupole:

> Ax’:l-lkz-x2
2

= sextupole kick changes the
amplitude and the phase
advance per turn!

2
AQturn o X

V- p
Ax’:i-lkn X"
n!
t X' w,

\
N

R+




Poincare Section: Stability?

Bl instability can be fixed by ‘detuning’:

=>» overall stability depends on the balance between amplitude
Increase per turn and tune change per turn:

AQ,,. (X) =»  motion moves eventually off resonance

AR..(X) =  motion becomes unstable

Bl sextupole kick:
amplitudes increases faster then the tune can change

-> overall instability!



Poincare Section: Illustration of Topolo

"l
B Poincare section: Q<13 VZ (f/./
\/ 2
B small amplitudes: =»  regular motion
B large amplitudes:  =» instability & particle loss

X
o

B fixed points and seperatrix  border between atable and unstable
motion =» chaotic motion



Poincare Section: Simulatiosn for a Sextupole Perturbation

Bl Poincare Section right after )g-nf.
the sextupole kick

4e-06 |
> for small amplitudes the 3e-06 |
Intersections still lie on closed  2e05 |
curves =» regular motion! | N

ol e
=» separatrix location depends on  -ic6 |

the tune distance from the exact !
resonance condition (Q < n/3)

3e-06 - - - - - —=
0,008 -0.006 -0.004 0.002 0 0002 0.004 0.006

X

for large amplitudes and near the separatrix the intersections
fill areas in the Poincare Section =» chaotic motion;
=>» no analytical solution exist!



Slow Extraction With Sextupoles

A

| -
%

=» adjust tune closer to the resonance condition during extraction

»

B Septum magnet:

ERE
ENENE]
ERE
ENENE]
ERE
ENENE)
ERE
ENE
ERE
ENENE]
ERE
ENENE]
ERE
ENENE]
ERE
ENENE]
ERE
ENENE]
ERE
ENENE]
ERE
ENENE]
ERE
ENENE]
ERE
ENENE]

Wy
Ik,

R, :lGﬂ[%—Q]-

the region of stable motion shrinks and more particles reach the septum



Stabilization of Resonances
B instability can be fixed by stronger ‘detuning’:

S5 If the phase advance per turn changes uniformly with
Increasing R the motion moves off resonance and stabilizes

Bl octupole perturbation: F(s)/(v- p) =g -Ik;-X°
B perturbation treatment:  X(S) = X,(S) +&- %, (S) +...

> dszx(3)+(2ﬂon/|—) X(S)——lk ‘Xg Xy

X, = A-cos(g) = X, =A72-[1+ CO/(/@]

A ] 09 =2 cos(2g)

42 %, (s)+[(22Q, o /L)% -



Stabilization of Resonances

B resonance stability for octupole:

2e-06

1.5e-06 1

= an octupole perturbation generate 106 | '
ohase independent detuning and  seor | ||
amplitude growth of the same i
order |

i
-5e-07

-le-06

=>» amplitude growth and detuning
are balanced and the 1.5e-06 |
overall motion Is stable! 206

-0.005 <0003 -0.001 0 0001 (L003

=» this is not generally true in case of several resonance driving
terms and coupling between the horizontal and vertical motion!



Chaotic Motion

B octupole + sextupole perturbation: X
2e-06
= the interference of the oCtupole 1seos| s
and sextupole perturbations -
generate additional resonances
=>»additional island chains in
the Poincare Section!

le-06

5e-07 t

-5e-07 ¢

=> intersections near the resonances |

lie no longer on closed curves =
local chaotic motion around

-2e-06

the separatrix & instabilities 0006 0004 0002 0 0002 0004 0.006
=>slow amplitude growth (Arnold diffusion) X

-1.5e-06

=» neighboring resonance islands start to “‘overlap’ for large
amplitudes =» global chaos & fast instabilities



Chaotic Motion

11 - ’ .
B <Russian Doll’ effect: :
X
’
X 2e-06 - - - - - le-06
1.50-06 | _ fg_,_:.z.__._:-. __ .
7 9.5e-07 \
le-06
—  9e-07
5e-07 | :
(§ f'&m ’ 8.5e-07
-5e-07
Be-07
-le-06 |
7.5e-07
-1.5e-06
_ZE-U{! L L i i i B _4/'.{-’--- i \-\\ i % 4L
0,006 -0.004  -0.002 0 0.002 0004 0.006 00002 0 0.0002 0.0004 0.0006
X X

=» magnifying sections of the Poincare Section reveals always the same
pattern on a finer scale =» renormalization theory!



Summary

B field imperfections drive resonances

B higher order than quadrupole field imperfections generate
non-linear equations of motion (no closed analytical solution)

(three body problem of Sun, Earth and Jupiter)
=» solutions only via perturbation treatment
B Poincare Section as a graphical tool for analyzing the stability
B slow extraction as example of resonance application in accelerator

B island chains as signature for non-linear resonances

B island overlap as indicator for globally chaotic & unstable motion
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