Accelerator for medical applications – CAS'15

CAS Working group #2

Jenny Dueck (PSI)

Sejla Mizic-Bajric (MedAustron)

Dr. Viktor Iakovenko (Kiev Institute for Nuclear Research)

Luis Mora Vallejo (CERN)

Dr. Xander Janssen (VDL)

Stefano Benedetti (CERN)

Introduction

- We have chosen Canada as the country for our hadron therapy facility
- We propose a facility for both carbon ion and proton therapy. Other ion species,
 with Q/m=1/2 (or "slightly" different, i.e. C11) could be used as well
- The accelerator technology that we propose is a *full linear solution*
- Given the absence of an available commercial facility, we propose a 2 years-long design study (same scheme of the *PIMMS study*), at the end of which a committee will decide whether to turn into construction phase or to stop the project
- Budget has to be allocated for the design study (see dedicated slide)

MAPLE

Medical Accelerator for Protons and Light ions for Extinction of cancer

Number of patients

Total po	pulation	36.16M
62%	South-East Ontario South Quebec	22.4M
1%	Cancer patient	224k
20%	Radio therapy	44.8k
15%	Hadron therapy	7k

GPTC (NL)	600 p/y
Scandion clinic (SE)	1000 p/y
MedAustron (A)	1400 p/y

5	min/fraction
12	fraction/hour
12	hours/day
144	fraction/day
250	days/year
36000	fraction/year
20	fraction/patient
1800	patients/year

Rationale of a full linear solution

- BEAM ENERGY. Can be varied actively, at the machine level, from pulse to pulse. 200 Hz repetition rate is doable.
- BEAM QUALITY. No need of degraders, i.e. no beam size spreading.
- COST-EFFECTIVE SOLUTION. A 3-room facility (without gantries) would cost around 40 M€ (source: ADAM)
- COMPACT SOLUTION. Bottom right picture has the footprint of CNAO.

Main design parameters

- Final beam energy: 450 MeV/u
- Energy variation range:
 70 MeV/u 450 MeV/u
- Average beam intensity:1-2 nA
- Spot size:
 FWHM adjustable 4 mm 12 mm
- Field size: 30 x 30 cm
- Active scanning, energy adjustable each 5 ms

Technical specifications

- ION SOURCE. EBIS type. High frequency intense pulsed C6+ and other species. Repetition rate (eventually with two sources) up to 400 Hz. Pulse length: 5 μs. Number of ions per μs: 2e+8. Pulse stability: <5%. Beam emittance: 0.1 to 0.2 mm.mrad.
- INJECTOR. RFQ. Frequency: 750 MHz. Input energy: 20 KeV/u. Output energy: 2.5 MeV/u.
 Transmission: >95%.
- INTERMEDIATE β STRUCTURE. IH type. Frequency: 3 GHz. Output energy: 70 MeV/u. Transmission: >15%. FODO lattice: PMQs.
- HIGH β STRUCTURE. CCL type. Frequency: 3 GHz. Output energy: 450 MeV/u. Transmission: >95%. FODO lattice: PMQs.
- Transfer lines: 180° MEBT with two 90° SC (?) dipoles and quadrupole in between to close dispersion. HEBT. Straight HEBT à la MedAustron.

RF power consumption estimation $\Delta W = \sqrt{Z} \uparrow V$

CCL:

- Delta energy gain = 450 MeV/u 70 MeV/u = 380 MeV/u = 760 MeV
- Approx. length = 35 m
- Avg Shunt Impedance= 100 Mohm/m
- Peak power: 165 MW ish... -> Avg. gradient 22 MV/m

H-structure:

- Delta energy gain = 70 MeV/u 2.5 MeV/u = 67.5 MeV/u = 135 MeV
- Approx. length = 15 m
- Avg Shunt Impedance= 60 Mohm/m
- Peak power: 20 MW ish... -> Avg. gradient 10 MV/m

Total RF peak power (with 1 MW RFQ) = 186 MW (225 with 20% wg losses) D.C. = $4 \mu s \times 400 Hz = 1.6e-3$

Average RF power consumption = 360 kW

RF power source

THALES TH 2157

K1 Scandi Nova modulator

Frequency range

RF output power

RF pulse duration

Saturated gain

peak

average

Efficiency

KIU-147/BAC

2998.5

7.5

8

6

48

48

7.7 MW
30 kW
6 µ sec
51 dB
77

kV

А

Electrical characteristics

Cathode voltage 150 Beam current 105

> No focusing solenoid (3 kW) Weight 90 kg Length 0.90 m

52

195

M3 Scandi**Nova** modulator

No oil tank. Possibility to operate klystron at a distance.

Timeline and business plan

Fixed

			111	CI	111		aı ı	IU	U	<u>اد د</u>	111	C_{2}	<u>ک ا</u>	JIC	<u> </u>												
1 2						3					4		5				6				7						
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Design Study																											
										Co	onstr	uctio	on														
															Ac	Accelerator Installation											
																				В	eam	ıg					
																								Acc	enta	ance	
																									tests		
																									iesis		
							E:					Ţ	otal	cost	S												
		L / 2 L					Fixe	d								Variable/running											
	ound 		ıa)											15		- Maintenance / consumables 6											
	ilding	_												20		- Energy (2MW x 16h/d) 1											
	celer													25	- F	- Personnel (120 persons)											
- 2x	Gant	try												20	- F	- Patient hotel (100 patients for 250 days) 2.5								5			
- Co	mmis	ssior	ning i	incl p	oerso	nnel	1							10													
- Tre	eatm	ent p	olanr	ning										7													
- Pa	tient	posi	itioni	ing										10													
- Im	aging	g sys	tems	s (1 N	ЛRI, (CT, 1	. PET	-CT, 4	4 CBO	CT)				2													
- Permits 1.5																											
- Decomissioning including removal of activated material ???																											
A Brahme et al. Nucl. Instr. And Meth. In Phys. Res. B																											
Sum													1	10.5	;											17.	5
												To	tal ir	ncon	ne 💮												

Variable/running

- 1800 patients x 20.000

36

Expertise needed

- BOARD
- HR
- Radioprotection
- FDA certifications and quality
- Safety
- Clinical Dep.
- Radiotherapy Dep.
- Medical Physics Dep.
- Imaging Dep.
- Radiobiology Dep.
- Bioengineering Dep.
- Administrative Dep.

- Finance Dep.
- Infrastracture Dep. (Electr, Mech, IT...)
- Accelerator Dep.
- R&D Dep.
- Operation Dep.
- Maintenance Dep.

Around 120 FTE (Full Time Equivalent) needed

