Case Study Presentation GROUP 1

Banana Republic Advanced Ion National

We are glad to introduce the new cancer therapy facility, designed to treat various kind of disease with innovative ions species.

Welcome to Banana Republic

- Banana Republic: A democratic military republic
- Motto: 'The president works for the people, and not the people for the president'. ('Free of bureaucracy country', President General Casc).
- Main income: natural resources and tourism
- Population: 5M
- GPD: 20,000 US dollars
- Facility next to Largest national hospital at 10 minutes distance
- Collaboration with the only university (NUB) to train students
- Local experts in nuclear engineering (energy and defense), to be trained in other centers abroad

Proportion of Deaths in the Banana Republic

Cancer (29.9%)
Heart disease (19.7%%)
Celebrovascular diseases (5.5%)
Chronic lower respiratory diseases (4.6%)
Accidents (4.4%)
Diabetes (3.0%)
Alzheimer's disease (2.6%)
influenza and pneumonia (2.4%)
suicide (1.5%)
kidney disease (1.4%)
others (25.0%)

Distribution of 10- year tumour based prevalence for selected cancers

- Prostrate (21.0%)
- Breast (18.8%)
- Colorectal (12.5%)
- Lung (4.7%)
- Melanoma (4.7%)
- Non-Hodgkin lymphoma (4.3%)
- Bladder (4.1%)
- Body of Uterus (3.8%)
- Tyroid(3.7%)
- Kidney(2.9%)
- All other cancers(19.6%)

Choice of Particle types

- Strong interest for radiobiology studies and therapy
- Good RBEs
- Good ballistic focusing
- Readily available
- Relatively low magnetic strength requirement for gantry operation
- Relatively low cost
- Compact source

Li

Cyclotron

- Sources: H_2^+ , ${}^{4}He^{2+}$, ${}^{6}Li^{3+}$ (q/m = $\frac{1}{2}$)
- SC Isochronous-Cyclotron (2.9Tm = 100 MeV/u)

part. type	Depth [cm]
р	7.7
He	7.1
Li	6
С	2.5
0	2

Synchrotron

- Standard elements and well known techniques
- Warm magnets: B_max $\approx 1.5 \text{ T}$

• Max. energy determines size circumference: E_max (Li) ≈ 250 MeV/u (for 30 cm)

- \rightarrow Synchrotron diameter \approx 15 m
- Slow extraction: transverse RF-Knockout

part. type	Depth [cm]
р	37.5
He	34.5
Li	30
С	13
0	10

Dose Delivery System

- Active Rasterscanning (state of the art)
- Highest dose conformity
- Avoid passive elements where possible

Treatment Organization

- Beam operations open 24/7 > 300 days/ year
- Estimate 1500 patients/year, ~ 120 patients/day
- Center open for medical treatment
 - 6:00 am 10:00 pm include QA (4 hrs/day)
 - 5 working days/ week
- NCR 7 days/week
 - Working days after medical treatment
 - Weekend 24 hrs

Cost estimation

• Overall cost 250 M€

(150 M€ each)

- Income 37.5 M€/year (1500 patients x 25 k€)
- Running cost 10 M€/year
 - 1 M€ for electricity
 - 7.5 M \in for personnel
 - 1.5 M \in for others
- Turn a round time is 10 years (extreme case, in reality 20 years)

Project timeline

