Soft X-ray HGHG FEL
Team 6

R. Kinjo, T. Lang, L.L. Lazzarino,
C. Lechner, S. Liu, N. Lockmann, J. Pforr
Cascaded HGHG-Seeded FEL

Stages: 3 (two fresh bunches per stage)
Harmonic per stage: <=9
Seed wavelength: 200 nm
Bunch charge: 1 nC
Continuous tuning from 1 nm to 10 nm

Major question to be answered:
• FEL design
 • undulator parameters
 • electron beam parameters
• Current and FEL power at 1 nm
• Temporal jitter and noise in upconversion process

L. Giannessi

Fresh Bunch Technique
Laser Tuning Range

- Assignment calls for continuous tuning of seeded FEL wavelength
- Scanning of atomic transitions, other AMO applications
- Largest gap between 20th and 24th harmonic
- To close gap, we need:

\[
\frac{200 \text{ nm} - u}{20} = \frac{200 \text{ nm} + u}{24}
\]

- Result \(u = 18.2 \text{ nm} \)

Going for seed wavelengths

180nm..220nm

6/9/2016
Possible Upconversion Configurations

Total harmonic factors:
6/9/2016

20, 24, 27, 28, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 162, 168, 175, 180, 189, 192, 196, 200

6/9/2016
Undulator Parameters

• Three-stage HGHG setup requires 6 undulators with 4 different parameters sets
 – planar, variable-gap undulators (hysteresis-free, tunable)
 – lengths determined by FEL considerations

<table>
<thead>
<tr>
<th></th>
<th>period [mm]</th>
<th>Krms min</th>
<th>Krms max</th>
<th>radiation wavelength [nm] min</th>
<th>radiation wavelength [nm] max</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod 1</td>
<td>128</td>
<td>8.45</td>
<td>12.68</td>
<td>180</td>
<td>220</td>
<td>?</td>
</tr>
<tr>
<td>Rad 1, Mod 2</td>
<td>80.4</td>
<td>3.45</td>
<td>7.96</td>
<td>20</td>
<td>55</td>
<td>?</td>
</tr>
<tr>
<td>Rad 2, Mod 3</td>
<td>59</td>
<td>1.71</td>
<td>5.84</td>
<td>4.5</td>
<td>22</td>
<td>?</td>
</tr>
<tr>
<td>Rad 3</td>
<td>37</td>
<td>1.22</td>
<td>3.66</td>
<td>1.0</td>
<td>10</td>
<td>?</td>
</tr>
</tbody>
</table>
Electron Beam Parameters

- Beam current has strong impact on FEL performance
 \[P_{\text{sat}} \propto I^{4/3} \]
- Energy spread is proportional to beam current
 - suppose, laser heater does 10keV slice energy spread at 60A injector current [similar to FERMI@Elettra parameters, see S. Spampinati, et al., PRSTAB 17, 120705 (2014)]
 - for 1kA current after compression, 170keV slice energy spread

Final radiator performance with 1kA beam
Estimation of Seed Power

- Obtained by integrating FEL pendulum equation

- Transverse intensity profile of seed has to be reasonably uniform over electron beam

\[\Delta E = h \cdot \sigma_E \]

\[\Delta \gamma = \sqrt{\frac{P}{P_0} \frac{2K_m L_m JJ}{\gamma_0 w_0}} \]

\[JJ = J_0(\xi) - J_1(\xi) \]

\[\xi = K_m^2 / (4 + 2K_m^2) \]

\[P_0 = 8.7 \text{ GW} \]

See e.g. E. Hemsing, et al., Rev. Mod. Phys. 86, 897 (2014)

6/9/2016
Diffraction Effect between Radiator and Modulator

\[P(z) = P_{\text{th}} \left[\frac{\frac{1}{3} \left(\frac{z}{L_g} \right)^2}{1 + \frac{1}{3} \left(\frac{z}{L_g} \right)^2} + \frac{\frac{1}{2} \exp \left(\frac{z}{L_g} - \sqrt{3} \right)}{1 + \frac{P_{\text{th}}}{2(P_F - P_{\text{th}})} \exp \left(\frac{z}{L_g} - \sqrt{3} \right)} \right] \]
Active Lengths of Undulators

Assume conservative initial bunching $b_0=0.1$

<table>
<thead>
<tr>
<th>Mod/Modes</th>
<th>Length [m]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod 1</td>
<td>3m</td>
<td>200MW seed power gives $\Delta E=2.6\text{MeV}$</td>
</tr>
<tr>
<td>Rad 1</td>
<td>10m</td>
<td>1GW</td>
</tr>
<tr>
<td>Mod 2</td>
<td>3m</td>
<td>1GW seed power gives $\Delta E=2.3\text{MeV}$</td>
</tr>
<tr>
<td>Rad 2</td>
<td>16m</td>
<td>1GW</td>
</tr>
<tr>
<td>Mod 3</td>
<td>4m</td>
<td>1GW seed power gives $\Delta E=1.7\text{MeV}$</td>
</tr>
<tr>
<td>Rad 3</td>
<td>53m</td>
<td>1GW @1nm</td>
</tr>
<tr>
<td>Total</td>
<td>89m</td>
<td>active length of undulators</td>
</tr>
</tbody>
</table>
Temporal Jitter

• We need some budget for temporal jitter (and drifts)
• Assume relative laser-electron jitter of 70 fs rms
• Supported by measurements:
Electron Bunch Allocation
for 70fs rms jitter

750fs * 1kA = 0.75nC

150fs for jitter
150fs spacer
150fs spacer
150fs for jitter

3x50fs lasing regions

R1
R2
R3

current I [kA]

750fs

1kA

t [s]

6/9/2016
Noise in HGHG Seeding

\[\left(\frac{P_s}{P_n} \right)_{\text{out}} = \frac{1}{\hbar^2_{\text{tot}}} \left(\frac{P_s}{P_n} \right)_{\text{in}} \]

• Signal-to-noise ratio degrades in upconversion process (signal: seed laser, noise: shot noise)

• Parameters:
 – Seed power at 200nm: \(P_s=200\text{MW} \times 1/9 \)
 – \(P_n=50\text{W} \)
 – factor 1/9: seed power within electron beam diameter

• Final SNR only 11 with \(h_{\text{tot}}=200 \)
Summary

• Designed 3-stage HGHG setup
 – Calculated undulator parameters
 – Defined electron bunch parameters (1kA, 2.5GeV / 3.5GeV for short wavelengths)
 – 200MW @200nm seed FEL with 1GW @1nm

• Shotnoise upconversion obliterates quality of seeded pulses (poor signal-to-noise ratio)

• LCLS soft x-ray self seeding: 500eV—1000eV (2.5nm – 1.25nm)

• (identification of next steps)
thank you for your attention
The Next Steps ...

• Stability analysis to determine
 – distribution of harmonics for given total upconversion
 – electron beam parameters
 – time-dependent simulations

• Consider different (longer) laser wavelengths centered, for instance
 – THG from OPA: 235nm—300nm
 – Or 260nm—310nm, around 100uJ pulse energy
 – Significantly higher laser pulse energies, BUT higher harmonics in FEL upconversions
BACKUP SLIDES
HGHG Seeding Principle

see lecture by L. Giannessi...
Bunching Formula

\[b_h = J_h \left(\frac{\Delta E}{E_0} \right) \exp \left(-\frac{1}{2} \left(\frac{h k R_{56}}{E_0} \frac{\sigma_E}{E_0} \right)^2 \right) \]

- In all radiator stages, assume conservative \(b = 0.1 \)
- For harmonic \(h \), energy modulation amplitude:
 \[\Delta E = h \cdot \sigma_E \]
Radiator 1

calculated with 900keV slice energy spread
Radiator 2

calculated with 900keV slice energy spread
Radiator 3

At short wavelengths:
Different performance
With different energies

black dashed = 2.5GeV, black solid = 3.5GeV, red solid = 5.0GeV
1kA, sigmaE=900keV (including modulation for h=9), emit_n=1.5e-6
Needed Harmonics in First Stage

... defines the resonance condition for R1
Total Up-Conversion in Radiator of Second Stage (h1*h2)
Lowest Factor First: h_1
Lowest Factor First: $h_1 \cdot h_2$

Tune 2nd radiator over $h=10...28$
Slice Energy Spread can be a Deal Breaker

FEL saturation power of radiator

needed seed power in modulator of next stage

\[\Delta E = h \cdot \sigma_E \]

Power P [W]

rms slice energy spread

6/9/2016
Infos Regarding Beam in Modulator

- FERMI CDR, p. 96 says:
 - 200MW of FEL emission from first stage radiator at FEL-2
 - “Provisionally the fresh bunch delay section is presumed to have a 1.8 m length (necessary in the numerical simulations to include proper diffraction effects).”

- Beam size at E=2.5GeV, emit=1.5mm*mrad, \(<\beta>=10m \Rightarrow \sigma_x=55\mu m\)
Modulator Noise

Diffraction Effect between Radiator and Modulator

Evolution of FEL power in radiator computed with formula from presentation by L. Giannessi

\[P(z) = \frac{P_{th}}{P_{th}^{6/9/2016}} \left[\frac{1}{3} \left(\frac{z}{L_g} \right)^2 + \frac{1}{2} \exp \left(\frac{z}{L_g} \sqrt{3} \right) \right] \]

\[\Delta \gamma = \ldots \]