Case Study

Design 5 - group 3 Neutrino Source

Jacqueline Yan Simone Montesano Aurelien Ponton,

Requirements

Pulse length	3 ns
No. of bunches	5 bunches
Repetition rate	50 – 60 Hz
Average beam power	~ 4 MW
Beam energy	2 – 8 GeV
Particle type	p+ or H-

3 possibilities:

- Neutrino factory (µ decay)
- Super-beam (π decay)
- Beta-beams (β decay of instable nuclei, i.e. ¹⁸He ⁸L ⁸B)

Physics considerations (I)

• v production chain:

Physics considerations (II)

• From the "Interim Design Report" of the IDS-NF collaboration

Beam intensity @ TARGET

 Given the optimal parameters we can compute the number of p+ per bunch n_p at the target:

 $P = e \times E_p \times n_b \times n_p \times F$ $4 \text{ MW} = e \times (2--8) \text{ GeV} \times 5 \times 3 \text{ ns} \times n_p \times 50 \text{ Hz}$

• For
$$E_p = 2 \text{ GeV} \rightarrow n_p = 5 \times 10^{13} \text{ p} + / \text{ bunch}$$

• For $E_p = 8 \text{ GeV} \rightarrow n_p = 1.25 \text{ x } 10^{13} \text{ p+ / bunch}$

typical values for neutrino factory: $n_p \simeq 10^{14}$

Accelerator Choices

- Given the high beam intensity, power, and pulse f_{rep}, we should consider a LINAC-based setup
 - Provides opportunity to use the facility for other applications simultaneously
- Similar design planned for Project X (8 GeV) and studied for SPL complex (5 GeV, 534 m)

However:

- A linac alone is not adequate for creating the necessary pulse structure at the target
- → We need an accumulator + bunch compressor

LINAC parameters

- ✤ t_{pulse} = 0.4 ms (typical value)
- ✤ f = 50 Hz (required pulse repetition rate)

✤ H⁻ injection

- We computed:
 - Duty cycle: η = 2%
 - Average current: $I = P / (E * \eta) = 25 \text{ mA}$
- Comparing with SPL design [see picture], we should go to higher frequency (1.4 GHz) and benefit from ILC technology (cryogenic, RF cavities)

ACCUMULATOR parameters

- Conventional magnets: B = 1 T particle energy from linac: E = 8 GeV
- We computed:
 - curvature: $\rho = 26.7 \text{ m}$ (B $\rho = 3.3(p/q)$)
 - circumference: C = 167.76 m (neglecting straight sections)
 - revolution $\tau_{rev} = 0.56 \ \mu s$
 - number of turns for injection: 715 turns
 - \rightarrow Injection can only be made with charge exchange scheme
 - If we use a isochronous machine, no RF system needed
- We shall optimize time structure of injected beam with 5 bunches of 50 ns separated by 60 ns gaps.

Bunch structure

- Injection into accumulator ring will be challenging
- Time structure:

- A compressor will then shorten the bunches from 50 ns to 3 ns, by phase rotation.
 - $-\rho$, τ_{rev} will be the same as the compressor
 - RF harmonic number will be 5

Summary

• Elements in our v facility:

LINAC (H-, E = 8 GeV, $t_{pulse} = 0.2 \text{ ms}$, I = 25 mA, duty cycle = 2%) ACCUMULATOR (isochronous, $n_b = 5$, $t_{bunch} = 50 \text{ ns}$, $t_{sep} = 60 \text{ ns}$, $n_p = 1.25 \times 10^{13}$) COMPRESSOR (5 bunches, $t_{bunch} = 50 \text{ ns} \rightarrow 3 \text{ ns}$)

- Challenges:
 - Very long linac
 - Cryogenic technology
 - Fast chopping
 - Beam losses in the linac

Thanks for Listening