CAS case study MFNF - My First Neutrino Factory

Iratxe Ariz, Kevin Li, Hugo Pereira, Jerzy Swiniarski

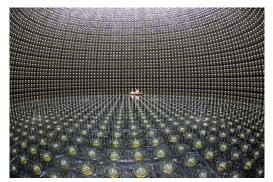
May 31, 2011

Why do we care about ν ?

- The quest for exploring the nature of our origin has been an ever important driving force for the development of man kind
- The efforts in trying to explore this problem have evolved since the past:

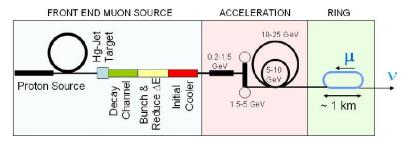
Why do we care about ν ?

- The quest for exploring the nature of our origin has been an ever important driving force for the development of man kind
- The efforts in trying to explore this problem have evolved since the past:



1345: Notre Dame

Why do we care about ν ?


- The quest for exploring the nature of our origin has been an ever important driving force for the development of man kind
- The efforts in trying to explore this problem have evolved since the past:

1996: Super Kamiokande

Why do we care about ν ?

- The quest for exploring the nature of our origin has been an ever important driving force for the development of man kind
- The efforts in trying to explore this problem have evolved since the past:

2011: the CAS ν -factory

High power proton driver - high ν -flux

Specifications		
	Pulse length	5 bunches of 3 ns rms
	Repetition rate	60 Hz
	Beam power	4 MeV
	Beam energy	2-8 GeV
	Primary particle	H ⁻

Current specifications

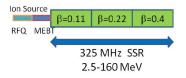
- 4 MW beam at 6 GeV and 60 Hz
 - 0.14×10¹⁴ protons per bunch
 - 11.1 mA ms in 16.7 ms
 - average current 0.67 mA at 100% duty cycle
 - average current 5.00 mA at 13.3% duty cycle

 \Rightarrow SCL (CW) for acceleration from 2.5 MeV-6 GeV

High power proton driver - high ν -flux

Specifications		
	Pulse length	5 bunches of 3 ns rms
	Repetition rate	60 Hz
	Beam power	4 MeV
	Beam energy	2-8 GeV
	Primary particle	H ⁻

Current specifications


- 4 MW beam at 6 GeV and 60 Hz
 - 0.14×10¹⁴ protons per bunch
 - 11.1 mA ms in 16.7 ms
 - average current 0.67 mA at 100% duty cycle
 - average current 5.00 mA at 13.3% duty cycle
- \Rightarrow SCL (CW) for acceleration from 2.5 MeV-6 GeV

RF structures

Section	β_r	f	Туре	Number	Gradient	Q	Energy ^a

^af [MHz], Gradient [MV/m], Q [10^{10}], Energy [MV]

RF structures

Section	β_r	f	Туре	Number	Gradient	Q	Energy ^a
SSR0	0.114	325	Spoke	26	6	0.6	2.5-10
SSR1	0.215	325	Spoke	18	7	1.1	10-32
SSR2	0.420	325	Spoke	44	9	1.3	32-160


^af [MHz], Gradient [MV/m], Q [10^{10}], Energy [MV]

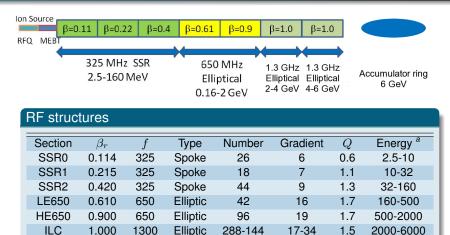
RF structures

Section	β_r	f	Туре	Number	Gradient	Q	Energy ^a
SSR0	0.114	325	Spoke	26	6	0.6	2.5-10
SSR1	0.215	325	Spoke	18	7	1.1	10-32
SSR2	0.420	325	Spoke	44	9	1.3	32-160
LE650	0.610	650	Elliptic	42	16	1.7	160-500
HE650	0.900	650	Elliptic	96	19	1.7	500-2000

^af [MHz], Gradient [MV/m], Q [10¹⁰], Energy [MV]

RF structures

Section	β_r	f	Туре	Number	Gradient	Q	Energy ^a
SSR0	0.114	325	Spoke	26	6	0.6	2.5-10
SSR1	0.215	325	Spoke	18	7	1.1	10-32
SSR2	0.420	325	Spoke	44	9	1.3	32-160
LE650	0.610	650	Elliptic	42	16	1.7	160-500
HE650	0.900	650	Elliptic	96	19	1.7	500-2000
ILC	1.000	1300	Elliptic	288-144	17-34	1.5	2000-6000


^af [MHz], Gradient [MV/m], Q [10¹⁰], Energy [MV]

RF structures

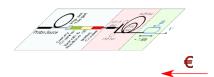
Section	β_r	f	Туре	Number	Gradient	Q	Energy ^a
SSR0	0.114	325	Spoke	26	6	0.6	2.5-10
SSR1	0.215	325	Spoke	18	7	1.1	10-32
SSR2	0.420	325	Spoke	44	9	1.3	32-160
LE650	0.610	650	Elliptic	42	16	1.7	160-500
HE650	0.900	650	Elliptic	96	19	1.7	500-2000
ILC	1.000	1300	Elliptic	288-144	17-34	1.5	2000-6000

^af [MHz], Gradient [MV/m], Q [10¹⁰], Energy [MV]

^af [MHz], Gradient [MV/m], Q [10¹⁰], Energy [MV]

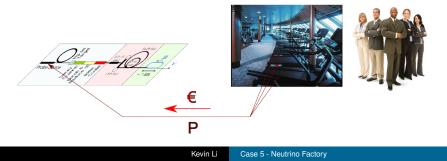
- Posh environment
- High member fees
- Feed generated power directly into the power supply circuit
- Members will explicitly be mentioned in the facilities year report

Move site near London/New York/Oslo and include the possibility for HNWIs (high net worth individuals) to actively participate in improving our future by research progress


Posh environment

- High member fees
- Feed generated power directly into the power supply circuit
- Members will explicitly be mentioned in the facilities year report

- Posh environment
- High member fees
- Feed generated power directly into the power supply circuit
- Members will explicitly be mentioned in the facilities year report



- Posh environment
- High member fees
- Feed generated power directly into the power supply circuit
- Members will explicitly be mentioned in the facilities year report

- Posh environment
- High member fees
- Feed generated power directly into the power supply circuit
- Members will explicitly be mentioned in the facilities year report

Thank You!

Contact details:

iariz@tekniker.es kevin.shing.bruce.li@cern.ch hugo.pereira@cern.ch jerzyswiniarski@esss.se