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1.1 Magnetic Field of Undulator

y

x

z e

Permanent
Magnet

Pole

Gap

Beam along z direction, magnetic field in y direction (vertical)

λu period of the magnet arrangement

Assume width of pole shoes larger than λu ⇒ x dependence of field can be neglected

Field on the axis approximately harmonic

By(0, 0, z) = B0 cos(kuz) with ku = 2π/λu (1)
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In vacuum we have ~∇ × ~B = 0, hence magnetic field can be written as gradient of scalar magnetic

potential
~B = ∇ϕ

Ansatz

ϕ(y, z) = f(y) cos(kuz)

potential ϕ fulfills Laplace equation

∇2
ϕ = 0 ⇒

d2f

dy2
− k2

uf = 0
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General solution

f(y) = c1 sinh(y) + c2 cosh(y)

By(y, z) =
∂ϕ

∂ϕ
= ku(c1 cosh(y) + c2 sinh(y)) cos(kuz)

By is symmetric with respect to the plane y = 0 ⇒ c2 = 0 and kuc1 = B0

ϕ(x, y, z) =
B0

ku
sinh(kuy) cos(kuz) (2)

For y 6= 0: field has also a z component

Bx = 0

By = B0 cosh(kuy) cos(kuz) (3)

Bz = −B0 sinh(kuy) sin(kuz)

In the following we restrict ourselves to the symmetry plane y = 0.
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1.2 Electron Motion in Undulator
Call W = Ekin +mec

2 the total relativistic energy of the electron. The transverse acceleration by the

Lorentz force is

γme~̇v = −e~v × ~B with γ =
W

mec2
(4)

Two coupled equations in symmetry plane y = 0

ẍ =
e

γme

Byż z̈ = −
e

γme

Byẋ (5)

First-order solution: vz = ż ≈ β c = const, vx � vz

x(t) ≈ −
eB0

γmeβck2
u

cos(kuβct) z(t) ≈ βct (6)

Cosinelike trajectory x(z) as a function of longitudinal position

x(z) = −A cos(kuz) with A =
eB0

γmeβck2
u

Maximum divergence angle

θmax ≈
[
dx

dz

]
max

=
eB0

γmeβcku
=
K

βγ
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Definition of undulator parameter

K =
eB0

mecku
=
eB0λu

2πmec
(7)

The emission of synchrotron radiation is inside a cone with opening angle 1/γ

Undulator: K ≤ 1, electron trajectory inside radiation cone

Wiggler: K > 1

Note: β = v/c is very close to 12. Physical Processes in a Free Electron Laser

B
1/γ

e–A B

Figure 2.1.: Emission of radiation in an undulator.

In the TTF undulator, the deviation from the straight orbit is only 10µm. Syn-
chrotron radiation is emitted by relativistic electrons in a cone with opening angle
1/γ. In an undulator, the the maximum angle of the particle velocity with respect to
the undulator axis α = arctan(vx/vz) is always smaller than the opening angle of the
radiation, therefore the radiation field may add coherently. In a wiggler, αmax > 1/γ,
and a broad radiation cone with lower intensity on the axis is emitted. The condition
for an undulator can be rewritten for vz ≈ c:

1

γ
> arctan

vxmax

vz
≈ vxmax

vz
≈ Kc

γc

=⇒ K < 1 (2.10)

Consider two photons emitted by a single electron at the points A and B, which
are one half undulator period apart (figure 2.1):

AB =
λu
2

(2.11)

If the phase of the radiation wave advances by π between A and B, the electromag-
netic field of the radiation adds coherently2. The light moves on a straight line AB
that is slightly shorter than the sinusoidal electron trajectory ÃB:

λ

2c
=
ÃB

v
− AB

c
(2.12)

2 Photons radiated by different electrons will however usually be incoherent.

22
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1.3 Motion in second order

ż =
√
β2c2 − ẋ2 ≈ c

(
1−

1

2γ2
(1 + γ

2
ẋ

2
/c

2
)

)
insert for ẋ(t) first order solution, then average z velocity is

v̄z = c

(
1−

1

2γ2
(1 +K

2
/2)

)
≡ β̄c (8)

z velocity oscillates

ż(t) = β̄c+
cK2

4γ2
cos(2ωut) with ωu = β̄cku

trajectory in second order

x(t) = −
cK

γωu
cos(ωut) z(t) = β̄ct+

cK2

8γ2ωu
sin(2ωut) (9)

– Typeset by FoilTEX – 7



1.4 Lorentz transformation to moving coordinate system
Consider coordinate system (x∗, y∗, z∗) moving with the average z velocity of electron:

v = v̄z = β̄c, γ̄ ≈ γ = W/(mec
2). The Lorentz transformation reads

t
∗

= γ̄(t− β̄z/c) = γ̄t(1− β̄2
) ≈ t/γ

x
∗

= x = −
cK

γωu
cos(ωut)

z
∗

= γ̄(z − β̄ct) ≈
cK2

8γωu
sin(2ωut)

The orbit in moving system (we introduce ω∗ = γωu, then ωut = ω∗t∗) is:

x
∗
(t
∗
) = −

cK

γωu
cos(ω

∗
t
∗
) z

∗
(t
∗
) =

cK2

8γωu
sin(2ω

∗
t
∗
) (10)

This is mainly a transverse harmonic oscillation with the frequency ω∗ = γωu. Superimposed is a

small longitudinal oscillation. This will be ignored here, it leads to higher harmonics in the radiation.
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1.2

0

1.2

x( )t

z( )t

oscillation of electron in 
co-moving coordinate system 
 
 

In co-moving system: electron emits dipole radiation:

frequency ω∗ = γωu and wavelength λ∗ = λu/γ

Remember: λu is the undulator period, i.e. the distance between two north poles.

Typical value: λu = 25 mm.
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1.5 Transformation of radiation into laboratory system

Angular distribution of dipole radiation for a moving dipole (computed by Sven Reiche)

We are interested in the light wavelength as function of the angle θ with respect to the beam axis

Lorentz transformation of the photon energy

~ω∗ = γ̄~ω`(1− β̄ cos θ)
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⇒ λ` =
2πc

ω`
=

2πcγ̄

ω∗
(1− β̄ cos θ) = λu(1− β̄ cos θ)

Use γ̄ ≈ γ, β̄ =
(
1− 1

2γ2
(1 +K2/2)

)
and cos θ ≈ 1− θ2/2

we obtain for the wavelength of undulator radiation

λ` =
λu

2γ2
(1 +K

2
/2 + γ

2
θ

2
) (11)

1.6 Line shape of undulator radiation
An electron passing an undulator with Nu periods produces a wavetrain with Nu oscillations. Electric

field of light wave:

⇒ E`(t) =

{
E0e

iω`t if− T/2 < t < T/2

0 otherwise

Finite wave train 
(here with 10 periods) 

0.96 0.98 1 1.02 1.04
0

0.5

1

I( )ω

ω

ω0

Spectral intensity for a wave train 
 with Nu = 100 periods– Typeset by FoilTEX – 11



Time duration of wave train T = Nuλ`/c

The wave train contains a frequency spectrum which is obtained by Fourier transformation

A(ω) =
1
√

2π

∫ +∞

−∞
EL(t)e

−iωt
dt =

E0√
2π

∫ +T/2

−T/2
e
i(ω`−ω)t

dt

=
2E0√
2π
·
sin(∆ωT/2)

∆ω
with ∆ω = ω − ω`

The spectral intensity is

I(ω) ∝
(

sin ξ

ξ

)2

with ξ = ∆ωT/2 =
πNu(ω − ω`)

ω`

It has a maximum at ω = ω` and a width proportional to 1/Nu.

Finite wave train 
(here with 10 periods) 

0.96 0.98 1 1.02 1.04
0

0.5

1

I( )ω

ω

ω0

Spectral intensity for a wave train 
 with Nu = 100 periods
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2. Low-Gain FEL

2.1 Energy transfer from electron to light wave

Consider light wave co-propagating with relativistic electron beam (provided for instance by“seed laser”)

plane electromagnetic wave polarised in x direction

Ex(z, t) = E0 cos(k`z − ω`t) with k` = ω`/c

Question: can there by continuous energy transfer from electron beam to light wave?

Electron energy is W = γmec
2, it changes in time dt by

dW = ~v · ~F = −evx(t)Ex(t)dt

The average electron speed in z direction is v̄z = c
(
1− 1

2γ2
(1 +K2/2)

)
< c

electron and light travel times for half period of undulator:

tel = λu/(2v̄z), tlight = λu/(2c)
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Continuous energy transfer happens if ω(tel − tlight) = π

(Remark: also 3π, 5π . . . are possible, leading to higher harmonics of the radiation)

z

vxvx

vxvx
Ex

Ex

electron trajectoryelectron trajectory

light wave

Using

1/v̄z − 1/c ≈ 1/(2γ
2
)(1 +K

2
/2)

ones finds for the light wavelength

λ` =
λu

2γ2

(
1 +

K2

2

)
(12)

This is equal to the undulator radition wavelength at θ = 0.
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2.2 Quantitative treatment

Energy transfer from electron to light wave (W = γmec
2 total energy of electron):

dW

dt
= −evx(t)Ex(t)

= −e
cK

γ
sin(kuz)E0 cos(k`z − ω`t)

= −
ecKE0

2γ
[sin((k` + ku)z − ω`t)− sin((k` − ku)z − ω`t)]

The argument of first sine function is called the ponderomotive phase:

ψ ≡ (k` + ku)z − ω`t (13)

One can show that the second sine term oscillates rapidly, it will be neglected here.

=⇒ mec
2 dγ

dt
≡
dW

dt
= −

e cE0K

2γ
sinψ (14)

If dW/dt < 0 ⇔ 0 < ψ < π: energy is transferred from the electron to the radiation field, the

light wave is amplified
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If we keep the phase ψ constant during the passage through undulator, then we get continuous energy

transfer

ψ = const ⇔
dψ

dt
= (k` + ku)v̄z − k`c = 0

Insertion of v̄z yields for the light wavelength

λ` =
λu

2γ2

(
1 +

K2

2

)

Consequence: the condition for resonant energy transfer yields the same light wavelength as in undulator

radiation at θ = 0.
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2.3 FEL with optical resonator
“Seeding”by external light source with wavelength λ`

Resonant energy γrmec
2 defined by

λ` =
λu

2γ2
r

(
1 +

K2

2

)
(15)
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Let electron energy be slightly larger, γ > γr

0 <
∆γ

γr
=
γ − γr
γr

� 1

Energy deviation ∆γ and ponderomotive phase ψ will both change due to the interaction with the

radiation field

Remark: in Low-gain FEL: field amplitude E0 ≈ const during one passage of undulator

The time derivative of the ponderomotive phase is no longer zero for γ > γr

ψ̇ = kuc− k`c 1+K2/2

2γ2
, subtract 0 = kuc− k`c 1+K2/2

2γ2r
(see eq. (12))

⇒
dψ

dt
=
k`c

2

(
1 +

K2

2

)(
1

γ2
r

−
1

γ2

)
It follows

dψ

dt
≈ 2kuc

∆γ

γr
(16)

The time derivative of gamma is
dγ

dt
= −

eE0K

2mecγ2
r

sinψ (17)

Combination of eq. (16) and (17) yields the“Pendulum Equation”of the low-gain FEL

ψ̈ + Ω2 sinψ = 0 with Ω
2
=
eE0Kku

meγ2
r

(18)
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Phase space representation
There is a complete analogy with the motion of a mathematical pendulum. At small

amplitude we get a harmonic oscillation. With increasing angular momentum the motion

becomes unharmonic. At very large angular momentum one gets a rotation (unbounded motion).

�� ��–π 0 � π
ψ�

ψ�

0

ψ
�

Rotation

ψ�

Oscillation

∼ 
(γ

 −
 γ

r)
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Phase space trajectories for many electrons with γ = γr and with γ > γr

−π/2 0 π/2 π

−0.06 %

−0.04 %

−0.02 %

0

0.02 %

0.04 %

0.06 %

ψ

a)

−π/2−π −π 0 π/2 π

−0.06 %

−0.04 %

−0.02 %

0

0.02 %

0.04 %

0.06 %

ψ

b)
∆γ / γr∆γ / γr

In the next chapter we will show that for γ > γr energy is transferred from the electron beam to the

light wave.
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2.4 Computation of Gain in FEL (Low-Gain Case)

The energy (per unit volume) of the laser field is

W` =
ε0

2
E

2
0

The energy increase and relative gain caused by 1 electron is

∆W` = −mec
2
∆γ G1 =

∆W`

W`

= −
2mec

2

ε0E2
0

∆γ

Considering all electrons in bunch and using eq. (16) the total gain becomes

G = −
mec

2γrne

ε0E2
0ku

· < ψ̇ > (19)

So we have to compute the quantity < ψ̇ >.

Phase change in undulator
Multiply pendulum equation ψ̈ + Ω2 sinψ = 0 with 2ψ̇ and integrate over time

ψ̇
2 − 2Ω

2
cosψ = const ⇒ ψ̇(t)

2
= ψ̇

2
0 + 2Ω

2
[cosψ(t)− cosψ0]

– Typeset by FoilTEX – 21



From eq. (16)

ψ̇0 = ψ̇(0) = 2c ku
γ0 − γr
γr

= ω

ψ̇(t) = ω
√

1 + 2(Ω/ω)2[cosψ(t)− cosψ0] (20)

For weak laser field one has (Ω/ω)2E0 � 1, expand square root up to second order√
1 + x = 1 + x/2− x2/8 . . .

ψ̇(t) = ω + (Ω
2
/ω)[cosψ(t)− cosψ0]− Ω

4
/(2ω

3
)[cosψ(t)− cosψ0]

2
(21)

This equation is solved iteratively

Zeroth order: ψ0(t) = ψ0 = const ψ̇0 = ω

First order: get phase ψ(t) in first order by integrating ψ̇0:

ψ1(t) = ψ0 + ψ̇0 · t = ψ0 + ω · t

Insert this in eq. (21) to get ψ̇ in first order

ψ̇1(t) = ω + (Ω
2
/ω)[cos(ψ0 + ωt)− cosψ0] (22)
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According to eq. (19) the gain is obtained by averaging ψ̇ over all particles in the bunch, i.e. by averaging

over all initial phases ψ0. This yields

< ψ̇1 >= 0

=⇒ FEL gain is zero in first order
Reason: the phase space distribution is almost symmetric

Second order: integrate (22) to get ψ in second order

ψ2(t) = ψ0 + ω · t︸ ︷︷ ︸
ψ1(t)

+ (Ω/ω)
2
[sin(ψ0 + ωt)− sinψ0 − ωt cosψ0]︸ ︷︷ ︸

δψ2(t)

(23)

Insert in eq. (21) to get ψ̇ in second order

ψ̇2(t) = ω + (Ω
2
/ω)[cos(ψ0 + ωt+ δψ2)− cosψ0]

− Ω
4
/(2ω

3
)[cos(ψ0 + ωt+ δψ2)− cosψ0]

2
(24)

δψ2 � 1 ⇒ cos(ψ0 + ωt+ δψ2) ≈ cos(ψ0 + ωt)− δψ2 sin(ψ0 + ωt)

cos(ψ0 + ωt+ δψ2) ≈ cos(ψ0 + ωt)

− (Ω/ω)
2
sin(ψ0 + ωt)[sin(ψ0 + ωt)− sinψ0 − ωt cosψ0]
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Averaging over all start phases ψ0 yields

< cos(ψ0 + ωt+ δψ2) >= (1/2)(1− cos(ωt)− ωt sin(ωt))

< ψ̇2 >= −(Ω
4
/ω

3
)[1− cos(ωt)− (ωt/2) sin(ωt)]

Remember T = Nuλu/c flight time through undulator and ξ = ∆ωT/2 then

< ψ̇2(T ) > = −
Ω4

ω3
[1− cos(ωT )− (ωT/2) sin(ωT )]

= −
Ω4

ω3
[1− cos(2ξ)− ξ sin(2ξ)]

=
N3
uλ

3
uΩ

4

8c3
·
d

dξ

(
sin ξ

ξ

)2

FEL gain function (19) is hence

G(ξ) = −
π e2K2N3

uλ
2
u ne

4ε0mec2γ3
r

·
d

dξ

(
sin2 ξ

ξ2

)
(25)
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Madey Theorem
The FEL gain curve is obtained by taking the negative derivative of the line-shape curve of undulator

radiation.

ξ ..,10 9.97 8

I( )ξ
sin( )ξ

ξ

2

G( )ξ ..2
sin( )ξ

ξ
2

cos( )ξ .2
sin( )ξ

2

ξ
3

spectral line of undulator gain of FEL

10 0 10
0

0.5

1

I( )ξ

ξ

10 0 10
1

0.5

0

0.5

1

G( )ξ

0

ξ

ξ = πNu

ω − ω`
ω`
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