Course on Free Electron Lasers

Peter Schmüser University of Hamburg

Part 1

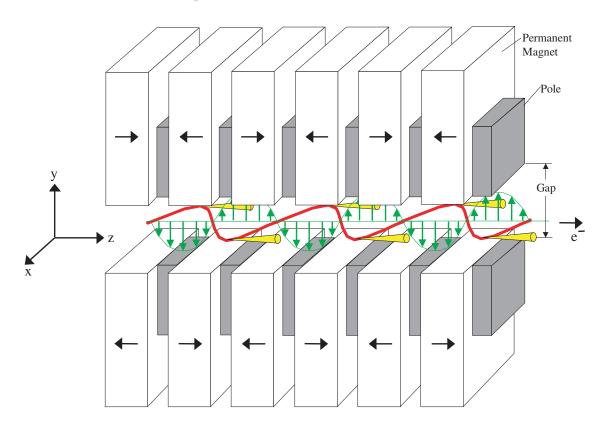
1. Undulator Radiation

- 1.1 Magnetic field of undulator
- ullet 1.2 Electron motion in undulator, undulator parameter K
- 1.3 Motion in second order
- 1.4 Lorentz transformation to moving coordinate system
- 1.5 Transformation of radiation into laboratory system
- 1.6 Line shape of undulator radiation

2. Low-Gain Free Electron Laser

- 2.1 Energy transfer from electron to light wave
- 2.2 Quantitative treatment
- 2.3 FEL with optical resonator, pendulum equation
- 2.4 Computation of gain in FEL (low-gain case), Madey theorem

1.1 Magnetic Field of Undulator



Beam along z direction, magnetic field in y direction (vertical) λ_u period of the magnet arrangement

Assume width of pole shoes larger than $\lambda_u \implies x$ dependence of field can be neglected Field on the axis approximately harmonic

$$B_y(0,0,z) = B_0 \cos(k_u z) \quad \text{with} \quad k_u = 2\pi/\lambda_u \tag{1}$$

– Typeset by Foil $T_E X$ –

In vacuum we have $\vec{\nabla}\times\vec{B}=0$, hence magnetic field can be written as gradient of scalar magnetic potential

$$\vec{B} = \nabla \varphi$$

Ansatz

$$\varphi(y,z) = f(y)\cos(k_u z)$$

potential φ fulfills Laplace equation

$$\nabla^2 \varphi = 0 \quad \Rightarrow \quad \frac{d^2 f}{dy^2} - k_u^2 f = 0$$

General solution

$$f(y) = c_1 \sinh(y) + c_2 \cosh(y)$$

$$B_y(y, z) = \frac{\partial \varphi}{\partial \varphi} = k_u(c_1 \cosh(y) + c_2 \sinh(y)) \cos(k_u z)$$

 B_y is symmetric with respect to the plane y=0 \Rightarrow $c_2=0$ and $k_uc_1=B_0$

$$\varphi(x, y, z) = \frac{B_0}{k_u} \sinh(k_u y) \cos(k_u z)$$
 (2)

For $y \neq 0$: field has also a z component

$$B_x = 0$$

$$B_y = B_0 \cosh(k_u y) \cos(k_u z)$$

$$B_z = -B_0 \sinh(k_u y) \sin(k_u z)$$
(3)

In the following we restrict ourselves to the symmetry plane y=0.

1.2 Electron Motion in Undulator

Call $W=E_{kin}+m_ec^2$ the total relativistic energy of the electron. The transverse acceleration by the Lorentz force is

$$\gamma m_e \dot{\vec{v}} = -e\vec{v} \times \vec{B} \quad \text{with} \quad \gamma = \frac{W}{m_e c^2}$$
 (4)

Two coupled equations in symmetry plane y=0

$$\ddot{x} = \frac{e}{\gamma m_e} B_y \dot{z} \qquad \qquad \ddot{z} = -\frac{e}{\gamma m_e} B_y \dot{x} \tag{5}$$

First-order solution: $v_z=\dot{z}pprox \beta\,c=const$, $v_x\ll v_z$

$$x(t) \approx -\frac{eB_0}{\gamma m_e \beta c k_u^2} \cos(k_u \beta c t) \qquad z(t) \approx \beta c t$$
 (6)

Cosinelike trajectory x(z) as a function of longitudinal position

$$x(z) = -A\cos(k_u z)$$
 with $A = \frac{eB_0}{\gamma m_e \beta c k_u^2}$

Maximum divergence angle

$$\theta max \approx \left[\frac{dx}{dz}\right]_{max} = \frac{eB_0}{\gamma m_e \beta c k_u} = \frac{K}{\beta \gamma}$$

Definition of undulator parameter

$$K = \frac{eB_0}{m_e c k_u} = \frac{eB_0 \lambda_u}{2\pi m_e c}$$
 (7)

The emission of synchrotron radiation is inside a cone with opening angle $1/\gamma$

Undulator: $K \leq 1$, electron trajectory inside radiation cone

Wiggler: K > 1

Note: $\beta = v/c$ is very close to 1

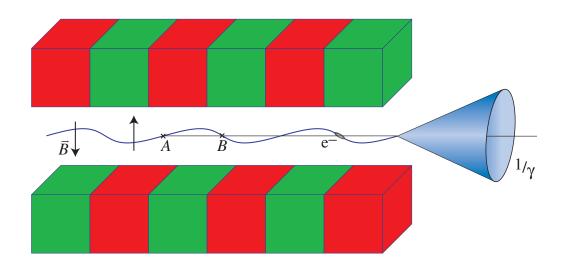


Figure 2.1.: Emission of radiation in an undulator.

1.3 Motion in second order

$$\dot{z} = \sqrt{\beta^2 c^2 - \dot{x}^2} \approx c \left(1 - \frac{1}{2\gamma^2} (1 + \gamma^2 \dot{x}^2 / c^2) \right)$$

insert for $\dot{x}(t)$ first order solution, then average z velocity is

$$\bar{v}_z = c \left(1 - \frac{1}{2\gamma^2} \left(1 + K^2 / 2 \right) \right) \equiv \bar{\beta}c \tag{8}$$

z velocity oscillates

$$\dot{z}(t) = \bar{\beta}c + \frac{cK^2}{4\gamma^2}\cos(2\omega_u t)$$
 with $\omega_u = \bar{\beta}ck_u$

trajectory in second order

$$x(t) = -\frac{cK}{\gamma \omega_u} \cos(\omega_u t) \qquad z(t) = \bar{\beta}ct + \frac{cK^2}{8\gamma^2 \omega_u} \sin(2\omega_u t) \tag{9}$$

1.4 Lorentz transformation to moving coordinate system

Consider coordinate system (x^*, y^*, z^*) moving with the average z velocity of electron: $v = \bar{v}_z = \bar{\beta}c, \quad \bar{\gamma} \approx \gamma = W/(m_e c^2)$. The Lorentz transformation reads

$$t^* = \bar{\gamma}(t - \bar{\beta}z/c) = \bar{\gamma}t(1 - \bar{\beta}^2) \approx t/\gamma$$

$$x^* = x = -\frac{cK}{\gamma\omega_u}\cos(\omega_u t)$$

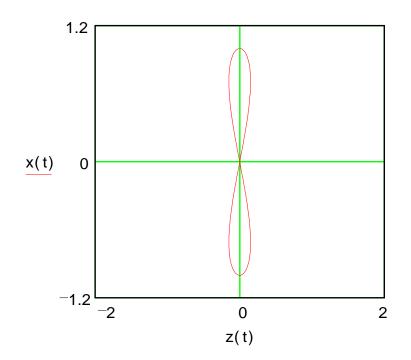
$$z^* = \bar{\gamma}(z - \bar{\beta}ct) \approx \frac{cK^2}{8\gamma\omega_u}\sin(2\omega_u t)$$

The orbit in moving system (we introduce $\omega^* = \gamma \omega_u$, then $\omega_u t = \omega^* t^*$) is:

$$x^{*}(t^{*}) = -\frac{cK}{\gamma\omega_{u}}\cos(\omega^{*}t^{*}) \qquad z^{*}(t^{*}) = \frac{cK^{2}}{8\gamma\omega_{u}}\sin(2\omega^{*}t^{*})$$
(10)

This is mainly a transverse harmonic oscillation with the frequency $\omega^* = \gamma \omega_u$. Superimposed is a small longitudinal oscillation. This will be ignored here, it leads to higher harmonics in the radiation.

– Typeset by Foil T_{EX} –



oscillation of electron in co-moving coordinate system

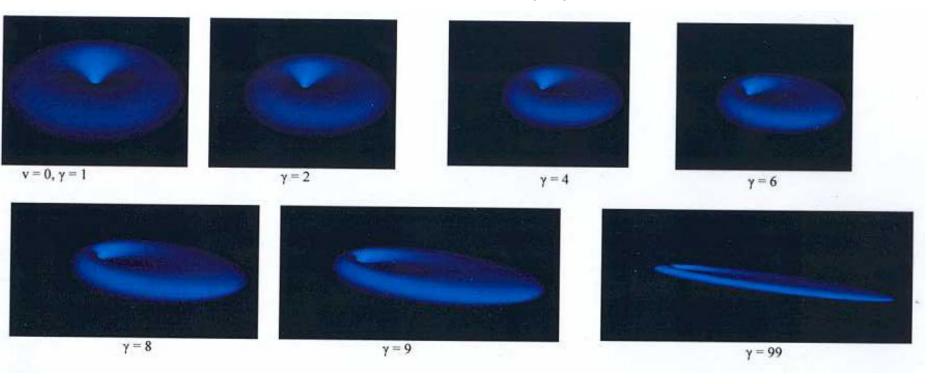
In co-moving system: electron emits dipole radiation:

frequency $\omega^*=\gamma\omega_u$ and wavelength $\lambda^*=\lambda_u/\gamma$

Remember: λ_u is the undulator period, i.e. the distance between two north poles.

Typical value: $\lambda_u=25$ mm.

1.5 Transformation of radiation into laboratory system



Angular distribution of dipole radiation for a moving dipole (computed by Sven Reiche)

We are interested in the light wavelength as function of the angle θ with respect to the beam axis Lorentz transformation of the photon energy

$$\hbar\omega^* = \bar{\gamma}\hbar\omega_\ell(1 - \bar{\beta}\cos\theta)$$

$$\Rightarrow \lambda_{\ell} = \frac{2\pi c}{\omega_{\ell}} = \frac{2\pi c \bar{\gamma}}{\omega^{*}} (1 - \bar{\beta}\cos\theta) = \lambda_{u}(1 - \bar{\beta}\cos\theta)$$

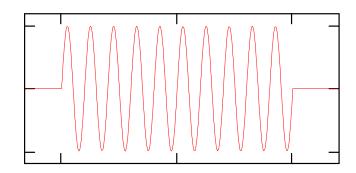
Use $\bar{\gamma} \approx \gamma$, $\bar{\beta} = \left(1 - \frac{1}{2\gamma^2}(1 + K^2/2)\right)$ and $\cos \theta \approx 1 - \theta^2/2$ we obtain for the wavelength of undulator radiation

$$\lambda_{\ell} = \frac{\lambda_u}{2\gamma^2} \left(1 + K^2/2 + \gamma^2 \theta^2 \right) \tag{11}$$

1.6 Line shape of undulator radiation

An electron passing an undulator with N_u periods produces a wavetrain with N_u oscillations. Electric field of light wave:

$$\Rightarrow E_{\ell}(t) = \begin{cases} E_0 e^{i\omega_{\ell}t} & \text{if } -T/2 < t < T/2 \\ 0 & \text{otherwise} \end{cases}$$



Finite wave train (here with 10 periods)

Time duration of wave train $T = N_u \lambda_\ell / c$

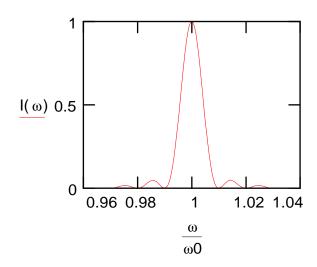
The wave train contains a frequency spectrum which is obtained by Fourier transformation

$$A(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} E_L(t) e^{-i\omega t} dt = \frac{E_0}{\sqrt{2\pi}} \int_{-T/2}^{+T/2} e^{i(\omega_{\ell} - \omega)t} dt$$
$$= \frac{2E_0}{\sqrt{2\pi}} \cdot \frac{\sin(\Delta \omega T/2)}{\Delta \omega} \quad \text{with} \quad \Delta \omega = \omega - \omega_{\ell}$$

The spectral intensity is

$$I(\omega) \propto \left(\frac{\sin \xi}{\xi}\right)^2 \quad \text{with} \quad \xi = \Delta \omega T/2 = \frac{\pi N_u(\omega - \omega_\ell)}{\omega_\ell}$$

It has a maximum at $\omega = \omega_\ell$ and a width proportional to $1/N_u$.



Spectral intensity for a wave train with $N_u = 100$ periods

2. Low-Gain FEL

2.1 Energy transfer from electron to light wave

Consider light wave co-propagating with relativistic electron beam (provided for instance by "seed laser") plane electromagnetic wave polarised in x direction

$$E_x(z,t) = E_0 \cos(k_\ell z - \omega_\ell t)$$
 with $k_\ell = \omega_\ell / c$

Question: can there by continuous energy transfer from electron beam to light wave? Electron energy is $W=\gamma m_e c^2$, it changes in time dt by

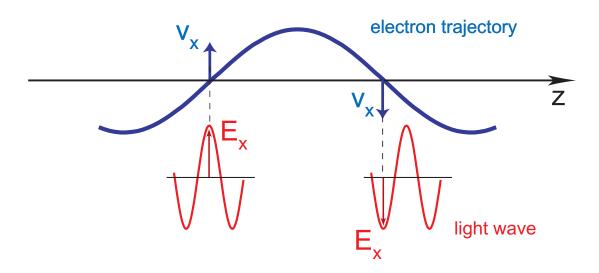
$$dW = \vec{v} \cdot \vec{F} = -ev_x(t)E_x(t)dt$$

The average electron speed in z direction is $\bar{v}_z = c \left(1 - \frac{1}{2\gamma^2} \left(1 + K^2/2\right)\right) \, < \, c$

electron and light travel times for half period of undulator:

$$t_{el} = \lambda_u/(2\bar{v}_z), \quad t_{light} = \lambda_u/(2c)$$

Continuous energy transfer happens if $\omega(t_{el}-t_{light})=\pi$ (Remark: also $3\pi, 5\pi$... are possible, leading to higher harmonics of the radiation)



Using

$$1/\bar{v}_z - 1/c \approx 1/(2\gamma^2)(1 + K^2/2)$$

ones finds for the light wavelength

$$\lambda_{\ell} = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) \tag{12}$$

This is equal to the undulator radition wavelength at $\theta = 0$.

2.2 Quantitative treatment

Energy transfer from electron to light wave ($W = \gamma m_e c^2$ total energy of electron):

$$\frac{dW}{dt} = -ev_x(t)E_x(t)$$

$$= -e\frac{cK}{\gamma}\sin(k_u z)E_0\cos(k_\ell z - \omega_\ell t)$$

$$= -\frac{ecKE_0}{2\gamma}\left[\sin((k_\ell + k_u)z - \omega_\ell t) - \sin((k_\ell - k_u)z - \omega_\ell t)\right]$$

The argument of first sine function is called the ponderomotive phase:

$$\psi \equiv (k_{\ell} + k_{u})z - \omega_{\ell}t \tag{13}$$

One can show that the second sine term oscillates rapidly, it will be neglected here.

$$\implies m_e c^2 \frac{d\gamma}{dt} \equiv \frac{dW}{dt} = -\frac{e c E_0 K}{2\gamma} \sin \psi \tag{14}$$

If $dW/dt < 0 \quad \Leftrightarrow 0 < \psi < \pi$: energy is transferred from the electron to the radiation field, the light wave is amplified

If we keep the phase ψ constant during the passage through undulator, then we get continuous energy transfer

$$\psi = const \Leftrightarrow \frac{d\psi}{dt} = (k_{\ell} + k_{u})\bar{v}_{z} - k_{\ell}c = 0$$

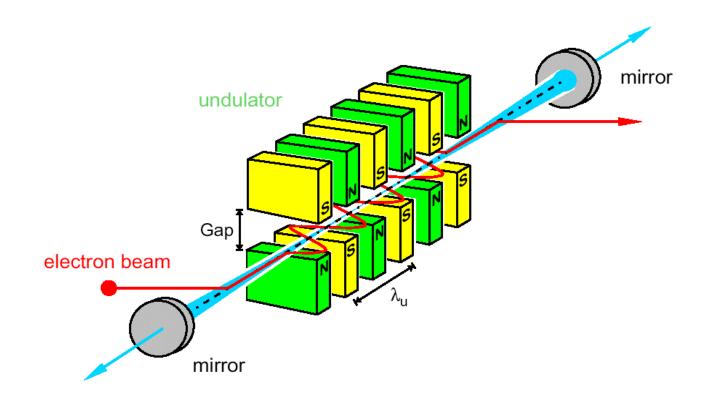
Insertion of \bar{v}_z yields for the light wavelength

$$\lambda_{\ell} = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

Consequence: the condition for resonant energy transfer yields the same light wavelength as in undulator radiation at $\theta = 0$.

2.3 FEL with optical resonator

"Seeding" by external light source with wavelength λ_ℓ



Resonant energy $\gamma_r m_e c^2$ defined by

$$\lambda_{\ell} = \frac{\lambda_u}{2\gamma_r^2} \left(1 + \frac{K^2}{2} \right) \tag{15}$$

Let electron energy be slightly larger, $\gamma > \gamma_r$

$$0 < \frac{\Delta \gamma}{\gamma_r} = \frac{\gamma - \gamma_r}{\gamma_r} \ll 1$$

Energy deviation $\Delta\gamma$ and ponderomotive phase ψ will both change due to the interaction with the radiation field

Remark: in Low-gain FEL: field amplitude $E_0 \approx const$ during one passage of undulator

The time derivative of the ponderomotive phase is no longer zero for $\gamma > \gamma_r$

$$\dot{\psi} = k_u c - k_\ell c \frac{1 + K^2/2}{2\gamma^2}$$
, subtract $0 = k_u c - k_\ell c \frac{1 + K^2/2}{2\gamma_x^2}$ (see eq. (12))

$$0 = k_u c - k_\ell c \, rac{1 + K^2/2}{2\gamma_T^2} \, ext{(see eq. (12))}$$

$$\Rightarrow \frac{d\psi}{dt} = \frac{k_{\ell}c}{2} \left(1 + \frac{K^2}{2} \right) \left(\frac{1}{\gamma_r^2} - \frac{1}{\gamma^2} \right)$$

It follows

$$\frac{d\psi}{dt} \approx 2k_u c \frac{\Delta\gamma}{\gamma_r} \tag{16}$$

The time derivative of gamma is

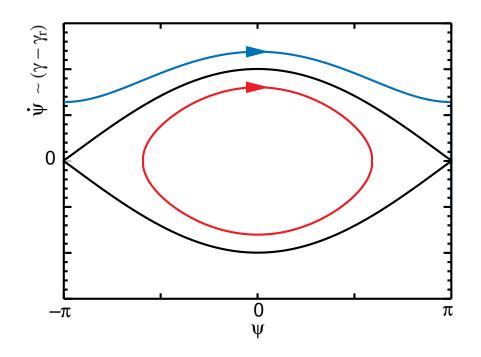
$$\frac{d\gamma}{dt} = -\frac{eE_0K}{2m_e c\gamma_r^2} \sin\psi \tag{17}$$

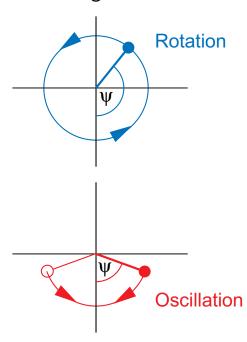
Combination of eq. (16) and (17) yields the "Pendulum Equation" of the low-gain FEL

$$\ddot{\psi} + \Omega^2 \sin \psi = 0 \quad \text{with} \quad \Omega^2 = \frac{eE_0 K k_u}{m_e \gamma_r^2} \tag{18}$$

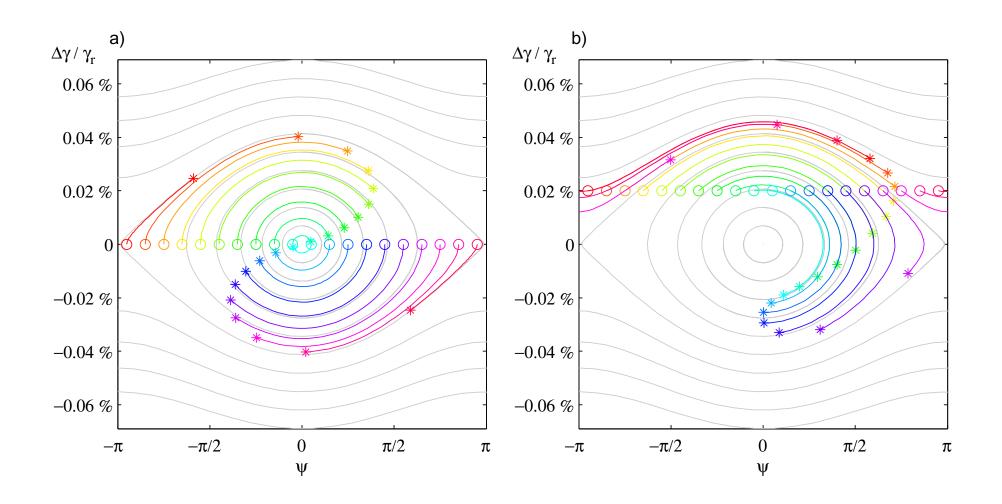
Phase space representation

There is a complete analogy with the motion of a mathematical pendulum. At small amplitude we get a harmonic oscillation. With increasing angular momentum the motion becomes unharmonic. At very large angular momentum one gets a rotation (unbounded motion).





Phase space trajectories for many electrons with $\gamma=\gamma_r$ and with $\gamma>\gamma_r$



In the next chapter we will show that for $\gamma > \gamma_r$ energy is transferred from the electron beam to the light wave.

2.4 Computation of Gain in FEL (Low-Gain Case)

The energy (per unit volume) of the laser field is

$$W_\ell = rac{arepsilon_0}{2} E_0^2$$

The energy increase and relative gain caused by 1 electron is

$$\Delta W_{\ell} = -m_e c^2 \Delta \gamma$$
 $G_1 = \frac{\Delta W_{\ell}}{W_{\ell}} = -\frac{2m_e c^2}{\varepsilon_0 E_0^2} \Delta \gamma$

Considering all electrons in bunch and using eq. (16) the total gain becomes

$$G = -\frac{m_e c^2 \gamma_r n_e}{\varepsilon_0 E_0^2 k_u} \cdot \langle \dot{\psi} \rangle$$
(19)

So we have to compute the quantity $<\dot{\psi}>$.

Phase change in undulator

Multiply pendulum equation $\ddot{\psi}+\Omega^2\sin\psi=0$ with $2\dot{\psi}$ and integrate over time

$$\dot{\psi}^2 - 2\Omega^2 \cos \psi = const \implies \dot{\psi}(t)^2 = \dot{\psi}_0^2 + 2\Omega^2 [\cos \psi(t) - \cos \psi_0]$$

From eq. (16)

$$\dot{\psi}_0 = \dot{\psi}(0) = 2c \, k_u \, \frac{\gamma_0 - \gamma_r}{\gamma_r} = \omega$$

$$\dot{\psi}(t) = \omega \sqrt{1 + 2(\Omega/\omega)^2 [\cos \psi(t) - \cos \psi_0]}$$
 (20)

For weak laser field one has $(\Omega/\omega)^2 E_0 \ll 1$, expand square root up to second order $\sqrt{1+x}=1+x/2-x^2/8\ldots$

$$\dot{\psi}(t) = \omega + (\Omega^2/\omega)\left[\cos\psi(t) - \cos\psi_0\right] - \Omega^4/(2\omega^3)\left[\cos\psi(t) - \cos\psi_0\right]^2 \tag{21}$$

This equation is solved iteratively

Zeroth order: $\psi_0(t)=\psi_0=const$ $\dot{\psi}_0=\omega$

First order: get phase $\psi(t)$ in first order by integrating $\dot{\psi}_0$:

$$\psi_1(t) = \psi_0 + \dot{\psi}_0 \cdot t = \psi_0 + \omega \cdot t$$

Insert this in eq. (21) to get $\dot{\psi}$ in first order

$$\dot{\psi}_1(t) = \omega + (\Omega^2/\omega)[\cos(\psi_0 + \omega t) - \cos\psi_0] \tag{22}$$

According to eq. (19) the gain is obtained by averaging $\dot{\psi}$ over all particles in the bunch, i.e. by averaging over all initial phases ψ_0 . This yields

$$<\dot{\psi}_1>=0$$

⇒ FEL gain is zero in first order

Reason: the phase space distribution is almost symmetric

Second order: integrate (22) to get ψ in second order

$$\psi_2(t) = \underbrace{\psi_0 + \omega \cdot t}_{\psi_1(t)} + \underbrace{(\Omega/\omega)^2 [\sin(\psi_0 + \omega t) - \sin\psi_0 - \omega t \cos\psi_0]}_{\delta\psi_2(t)}$$
(23)

Insert in eq. (21) to get $\dot{\psi}$ in second order

$$\dot{\psi}_2(t) = \omega + (\Omega^2/\omega) [\cos(\psi_0 + \omega t + \delta \psi_2) - \cos \psi_0] - \Omega^4/(2\omega^3) [\cos(\psi_0 + \omega t + \delta \psi_2) - \cos \psi_0]^2$$
(24)

$$\delta \psi_2 \ll 1 \quad \Rightarrow \quad \cos(\psi_0 + \omega t + \delta \psi_2) \approx \cos(\psi_0 + \omega t) - \delta \psi_2 \sin(\psi_0 + \omega t)$$

$$\cos(\psi_0 + \omega t + \delta \psi_2) \approx \cos(\psi_0 + \omega t) - (\Omega/\omega)^2 \sin(\psi_0 + \omega t) [\sin(\psi_0 + \omega t) - \sin\psi_0 - \omega t \cos\psi_0]$$

Averaging over all start phases ψ_0 yields

$$<\cos(\psi_0 + \omega t + \delta\psi_2)> = (1/2)(1 - \cos(\omega t) - \omega t \sin(\omega t))$$

$$\langle \dot{\psi}_2 \rangle = -(\Omega^4/\omega^3)[1 - \cos(\omega t) - (\omega t/2)\sin(\omega t)]$$

Remember $T=N_u\lambda_u/c$ flight time through undulator and $\xi=\Delta\omega T/2$ then

$$\langle \dot{\psi}_2(T) \rangle = -\frac{\Omega^4}{\omega^3} [1 - \cos(\omega T) - (\omega T/2) \sin(\omega T)]$$

$$= -\frac{\Omega^4}{\omega^3} [1 - \cos(2\xi) - \xi \sin(2\xi)]$$

$$= \frac{N_u^3 \lambda_u^3 \Omega^4}{8c^3} \cdot \frac{d}{d\xi} \left(\frac{\sin \xi}{\xi}\right)^2$$

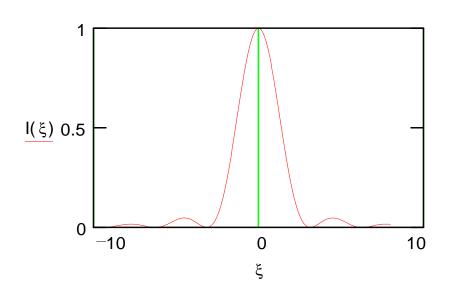
FEL gain function (19) is hence

$$G(\xi) = -\frac{\pi e^2 K^2 N_u^3 \lambda_u^2 n_e}{4\varepsilon_0 m_e c^2 \gamma_r^3} \cdot \frac{d}{d\xi} \left(\frac{\sin^2 \xi}{\xi^2} \right)$$
 (25)

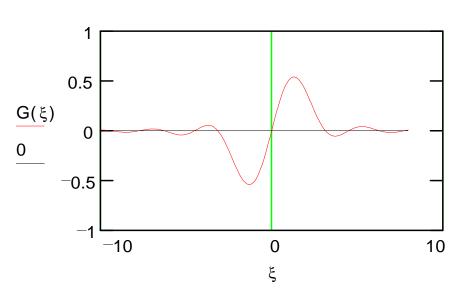
Madey Theorem

The FEL gain curve is obtained by taking the negative derivative of the line-shape curve of undulator radiation.

spectral line of undulator



gain of FEL



$$\xi = \pi N_u \frac{\omega - \omega_\ell}{\omega_\ell}$$