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1.1 Magnetic Field of Undulator
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Beam along z direction, magnetic field in y direction (vertical)
A period of the magnet arrangement

Assume width of pole shoes larger than A\, =- x dependence of field can be neglected
Field on the axis approximately harmonic

B,(0,0,z) = Bgcos(kyz) with k, =27w/\,
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L

In vacuum we have V X B = 0, hence magnetic field can be written as gradient of scalar magnetic

potential

Ansatz
©(y, z) = f(y) cos(kuz)
potential ¢ fulfills Laplace equation
d’f

Vie=0 = d—yQ—kif:o
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General solution

f(y) = c1sinh(y) + c2 cosh(y)

0
By(y, z) = £ = ky(c1 cosh(y) 4+ cosinh(y)) cos(kyz)

B, is symmetric with respect to the planey =0 = ¢co =0 and kyc; = By

o(x,y,z) = % sinh(k,y) cos(k,z) (2)

u

For y % O: field has also a z component

B, = 0
B, = Bgcosh(k,y)cos(k,z) (3)
B, = —Bgsinh(k,y)sin(k,z)

In the following we restrict ourselves to the symmetry plane y = 0.
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1.2 Electron Motion in Undulator

Call W = Ej;n + mec? the total relativistic energy of the electron. The transverse acceleration by the

Lorentz force is

iR L3 : %%
YMeU = —ev X B with v = >
MeC
Two coupled equations in symmetry plane y = 0O
oo e . X e .
€T = Byz z = — Byaz
Y RALLE
First-order solution: v, = 2 = B¢ = const, v, K v,
eB
x(t) ~ — 0 cos(k,Oct) z(t) =~ Bct
ymeBck?
Cosinelike trajectory x(z) as a function of longitudinal position
eB
x(z) = —Acos(k,z) with A = .
Vmeﬁckq%

Maximum divergence angle
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Definition of undulator parameter

€Bo GB())\u
K = =
mecky, 2TMC

The emission of synchrotron radiation is inside a cone with opening angle 1/~
Undulator: K < 1, electron trajectory inside radiation cone

Wiggler: K > 1

Note: B = w/c is very close to 1
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Figure 2.1.: Emission of radiation in an undulator.



1.3 Motion in second order

1
=22 —i2~c (1 - (1 —1—’72:&2/02))
22

insert for & (t) first order solution, then average z velocity is

Y 2o -
vz—c(l 272(1—}—K/2)>_6

z velocity oscillates

cK?

42

2(t) = Be + cos(2w,t) with w, = Bck,

trajectory in second order

2

cK cK

x(t) = — cos(wyt) z(t) = Bet +

sin(2w,t
YWy 8v2wy, (Zwut)
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1.4 Lorentz transformation to moving coordinate system
Consider coordinate system (™, y*, z*) moving with the average z velocity of electron:
v="1,=Pc, F~v=W/(me.c?). The Lorentz transformation reads

t" = (t—PBz/c) =3t(1 - B°) = t/y
. cK
xr = x=— cos(wyt)
YWy
» _ - cK?
z. = ~(z— Pct) = 2 sin(2wyt)

The orbit in moving system (we introduce w™ = ~ywy, then w,t = W™ t") is:

x (t7) = — cos(w't) z (t7) = sin(2w't") (10)
YWy 8YWy,
This is mainly a transverse harmonic oscillation with the frequency w* = ~w,. Superimposed is a

small longitudinal oscillation. This will be ignored here, it leads to higher harmonics in the radiation.
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1.2
a0 oscillation of electron in
| co-moving coordinate system

X1 o ,*

—1.2

z(1)

In co-moving system: electron emits dipole radiation:
frequency w* = ~yw, and wavelength \* = X\, /~
Remember: )\, is the undulator period, i.e. the distance between two north poles.

Typical value: A, = 25 mm.
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1.5 Transformation of radiation into laboratory system

Angular distribution of dipole radiation for a moving dipole (computed by Sven Reiche)

We are interested in the light wavelength as function of the angle 6 with respect to the beam axis
Lorentz transformation of the photon energy

hw” = Fhwe(1 — BcosH)
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27rc 27Ty
= N = 7

(1—60086) = A\y(1 — Bcosb)
Wy
Use ¥ = v, B = (1 ——(1—|—K2/2)> and cos 0 ~

we obtain for the wavelength of undulator radiation

1 —6%/2

A =

+ K?/2 + +°6°)

(11)

1.6 Line shape of undulator radiation

An electron passing an undulator with N, periods produces a wavetrain with NV, oscillations
field of light wave:

. Electric
int L
Ee(t):{ Eoe if—T/2<t<T/2

0 otherwise
T — I ) l ]
A A A A e O A
I
‘M‘c“\‘w‘““”;w\“‘\ Finite wave train
‘\“‘w“‘w‘\”\‘\‘—— (here with 10 periods)
PVt L
Y
| | I | | \‘ \ ||
\;‘ v ovoy
C | 1 1 ]
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Time duration of wave train T' = N,\¢/c
The wave train contains a frequency spectrum which is obtained by Fourier transformation

—|—T/2

V2m J-1/2

Aw) = Ep(t)e “tdt = Hwe=w)t gy

eI

_ 2Eo sin(AwT /2) with Aw — w — w;

V2 Aw

The spectral intensity is

™ Ny(w — wy)

Wy

sin & 2 ,
I(w)oc( : ) with £ = AwT/2 =

It has a maximum at w = wy and a width proportional to 1/NV,,.

1 | T |
Spectral intensity for a wave train
with N, = 100 periods
Iw) 05 - -
0 1~ | s
0.96 0.98 1 1.02 1.04
w
w0
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2. Low-Gain FEL

2.1 Energy transfer from electron to light wave

Consider light wave co-propagating with relativistic electron beam (provided for instance by “seed laser”)
plane electromagnetic wave polarised in o direction

E.(z,t) = Egcos(kiz — wet) with ky = wy/c

Question: can there by continuous energy transfer from electron beam to light wave?
Electron energy is W = ym.c?, it changes in time dt by

AW = ¥ - F = —ev,(t)E,(t)dt

The average electron speed in z direction is U, = ¢ (1 — 2%2 (14 K2/2)) < c

electron and light travel times for half period of undulator:

teg = >\u/(2'ﬁz)a tlight — >\u/(20>
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Continuous energy transfer happens if w(te; — tiight) = 7
(Remark: also 37, 57 . . . are possible, leading to higher harmonics of the radiation)

Vv electron trajectory

|
X |
|
|

light wave
E g

Using
1/, —1/c~ 1/(29°)(1 + K?/2)

ones finds for the light wavelength

A= 2 (1 ' 5) (12)

This is equal to the undulator radition wavelength at 6 = O.
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2.2 Quantitative treatment

Energy transfer from electron to light wave (W = ~mec? total energy of electron):

dW
- evy(t) Ex (1)
K
— —ec— Sin(kuz)Eo COS(kEZ — wﬁt)
Y
ecK Ej

— 5 [sin((k¢ + ku)z — wet) — sin((ke — ku)z — wyt)]
Y

The argument of first sine function is called the ponderomotive phase:
P = (kg + ku)z — wyt

One can show that the second sine term oscillates rapidly, it will be neglected here.

s dy  dW ecbyK |
= = ————sinvy

—> MeC
dt dt 27y

(13)

(14)

If dW/dt < 0 < 0 < 1 < 7: energy is transferred from the electron to the radiation field, the

light wave is amplified

— Typeset by Foil TEX -

15



If we keep the phase 1) constant during the passage through undulator, then we get continuous energy

dip _
Y = const & = (ke + ky)U, — kec =0

Insertion of v, yields for the light wavelength

transfer

Consequence: the condition for resonant energy transfer yields the same light wavelength as in undulator
radiation at § = 0.
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2.3 FEL with optical resonator
“Seeding” by external light source with wavelength )\,
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Let electron energy be slightly larger, v > ~,

A - r
0 < v_7 ’Y<<1
Yr Yr

Energy deviation A~ and ponderomotive phase 1 will both change due to the interaction with the

radiation field
Remark: in Low-gain FEL: field amplitude /g = const during one passage of undulator

The time derivative of the ponderomotive phase is no longer zero for v > ~,

: 2 2
Y = kyc — kyc 1+21§2/2 ,  subtract 0 = kyc — kec 1+21§2/2 (see eq. (12))
d k K* 1 1
= W e 1+ — )= — =
dt 2 2 v2 42
It follows i A
— =~ 2k,c 7
dt Yo
The time derivative of gamma is
d~y ebEgK
— = ————sin¥y
dt 2mecy?
Combination of eq. (16) and (17) yields the “Pendulum Equation” of the low-gain FEL
. 2 . . 2 eEOKku
Y+ Q°siny =0 with Q" = ——
Mey?
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Phase space representation

There is a complete analogy with the motion of a mathematical pendulum. At small
amplitude we get a harmonic oscillation. With increasing angular momentum the motion
becomes unharmonic. At very large angular momentum one gets a rotation (unbounded motion).

“

Rotation

\i’ - (Y_Yr)

|

g
Oscillation
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Phase space trajectories for many electrons with v = -y, and with v > ~,.

a) b)
Ay 1, : : . AY 1Y,
0.06 % | 7 0.06 %
0.04 %1 1 0.04 % 1 .
0.02 % 1 002% / 0o
—0.02 % 1 =0.02%¢ 1
—-0.04 % 1 1 —-0.04 % 1
—0.06 % 1 1 —0.06 %
-7 —t/2 0 /2 T -7 —1t/2 0 /2 T
v v

In the next chapter we will show that for v > ~,. energy is transferred from the electron beam to the

light wave.
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2.4 Computation of Gain in FEL (Low-Gain Case)

The energy (per unit volume) of the laser field is

80 2
Wy =—F
14 9 0

The energy increase and relative gain caused by 1 electron is

AW, 2m.c>
AW, = —m.c’A G, = = — A
¢ Y 1 W, €oE§ Y

Considering all electrons in bunch and using eq. (16) the total gain becomes

2
mMmeC 7YrTe

G = — 5
EoEOk'u

< ) > (19)

So we have to compute the quantity < zp >,

Phase change in undulator
Multiply pendulum equation v 4+ ©2° sin ¢ = 0 with 2¢) and integrate over time

P? — 20°%cos ) = const = 1&(15)2 = %D(Q) + QQQ[COS W(t) — cos Y]
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From eq. (16)
o = 1 (0) = QCkuﬂyO L

Yr

$(t) = wy/ 1+ 2(/w)?[cos (1) — cos vl
For weak laser field one has (2/w)*Ey < 1, expand square root up to second order

ViFz=14+2/2—2%/8...

¢(t) = w + (QQ/w)[cos W(t) — cos ] — Q4/(2w3)[cos Y (t) — cos wo]2

This equation is solved iteratively

Zeroth order: y(t) = 1y = const Yy = w

First order: get phase 1/ (t) in first order by integrating Po:

D1(t) = o+ 1ot =P+ w-t

Insert this in eq. (21) to get 1) in first order
1 () = w + (% /w)[cos(g + wt) — cos Y]
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According to eq. (19) the gain is obtained by averaging ?,b over all particles in the bunch, i.e. by averaging
over all initial phases 1. This yields

< ¢1 >=0
—> FEL gain is zero in first order
Reason: the phase space distribution is almost symmetric

Second order: integrate (22) to get ¢ in second order

Pa(t) = ho 4+ w - t+ (2/w)’[sin(thy + wt) — sin gy — wt cos ] (23)
wl(t) 5¢2(t)

Insert in eq. (21) to get ) in second order

1&2(75) = w+ (92/w)[cos(¢0 + wt + d2) — cos Yy
— QY (2w [cos(g + wt + F1hs) — cos ]’ (24)

0o K1 = cos(YPo+ wt + ) = cos(thg + wt) — o sin(y + wt)

cos(Yo + wt 4+ d1p3) ~ cos(Wo + wt)
—  (Q/w)?sin(¢o + wt)[sin(ho + wt) — sinhy — wt cos )
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Averaging over all start phases 1) yields
< cos(YPo + wt + dY2) >= (1/2)(1 — cos(wt) — wtsin(wt))

<y >= —(Q/w?)[1 — cos(wt) — (wt/2) sin(wt)]
Remember T' = N, A\, /c flight time through undulator and £ = AwT' /2 then
, 04
< o(T) > = _E[l — cos(wT) — (wT/2) sin(wT)]

4

— _%[1 — cos(2€) — € sin(2¢)]

ONIXQY d (sin§>2
8c3  de\ ¢

FEL gain function (19) is hence

G(e) = — (25)

T €2K2N3)\i Ne d <sin2 §>

degmec?y3  dE\ €2
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Madey Theorem

The FEL gain curve is obtained by taking the negative derivative of the line-shape curve of undulator
radiation.

spectral line of undulator gain of FEL
1 1
05 /N —
G(x)
I(x) 0.5 — — o : o
o “ ‘ O \\\ /
- \ /
05 % —]
—~ /’/“‘j —
0 - — _ ./ N 71
—10 0 10 —10 0 10
X
W — Wy
§=7mN,———
Wy
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