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An important figure of merit for a synchrotron light source is the brightness, 

which depends directly on the horizontal and vertical beam emittances.

Diffraction limits and beam lifetime effects mean that ultra-low emittances are not 

always useful: but modern light sources have challenging specifications.

Why is it important to achieve low beam emittance in a storage ring?
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An important figure of merit for a collider is the luminosity, which depends 

directly on the horizontal and vertical beam emittances.

Dynamical effects related to the collisions mean that is sometimes helpful to 

increase the horizontal emittance; but generally, reducing the vertical 

emittance as far as possible helps to increase the luminosity.

Why is it important to achieve low beam emittance in a storage ring?
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Low Emittance Machines: Outline of Lecture Contents

Lecture 1: Beam dynamics with synchrotron radiation.

• The effects of synchrotron radiation on the (linear) motion of particles in 

storage rings.

• The synchrotron radiation integrals.

• Damping times of the vertical, horizontal and longitudinal emittances.

• Quantum excitation and the equilibrium horizontal and longitudinal beam 

emittances in an electron storage ring.

Lecture 2: Equilibrium emittance and storage ring lattice design.

• The natural emittance in different types of lattice (FODO, DBA, TME…).

• Emittance reduction in an achromat by "detuning" from the zero-dispersion 

conditions.

• Effects of insertion devices, and wiggler-dominated storage rings.

Lecture 3: Emittance computation and tuning in coupled storage rings.

• Computation of equilibrium emittances in storage rings with coupling.

• Issues associated with low-emittance tuning.
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Lecture 1 objectives: linear beam dynamics with synchrotron radiation

In this lecture, we shall:

• define action-angle variables for describing symplectic motion of a 

particle along a beam line;

• discuss the effect of synchrotron radiation on the (linear) motion of 

particles in storage rings;

• derive expressions for the damping times of the vertical, horizontal 

and longitudinal emittances;

• discuss the effects of quantum excitation, and derive expressions for 

the equilibrium horizontal and longitudinal beam emittances in an 

electron storage ring.
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Coordinate system
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Longitudinal coordinate

The reference particle is a particle travelling along the reference trajectory 

with momentum P0 and velocity b0c.

If a particle is time  ahead of the reference particle, then the longitudinal 

coordinate z is defined by:
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Energy deviation

If the particle has total energy E, then the energy deviation d is defined by:

For ultra-relativistic particles (b  b0  1), we have:
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Canonical variables

With the definitions in the previous slides, the coordinates and momenta 

form canonical conjugate pairs:

What this means, is that if M represents the linear transfer matrix for a beam 

line consisting of some sequence of drifts, solenoids, dipoles, quadrupoles, 

or RF cavities, i.e.:

then, neglecting radiation from the particle, the matrix M is symplectic.
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Symplectic matrices

Mathematically, a matrix M is symplectic if it satisfies the relation:

where S is the antisymmetric matrix:

Physically, symplectic matrices preserve areas in phase space.

For example, in one degree of freedom:
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Twiss parameters and the particle action

In an uncoupled periodic beam line, 

particles trace out ellipses in phase 

space with each pass through the 

periodic cell.  The shape of the ellipse 

defines the Twiss parameters at the 

observation point.

The area of the ellipse defines the 

action Jx of the particle.

The action is the amplitude of the 

motion of the particle as it moves 

along the beam line.
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Cartesian variables and action-angle variables

Applying simple geometry to the phase space ellipse, we find that the action 

(for uncoupled motion) is related to the Cartesian variables for the particle by:

We also define the angle x as follows:

The action-angle variables provide an alternative to Cartesian variables for 

describing the dynamics of a particle moving along a beam line.  The 

advantage of action-angle variables is that, under symplectic transport, the 

action of a particle is constant.

It turns out that the action-angle variables are canonically conjugate.

Note: if the beam line is coupled, then we need to make a coordinate transformation to 

the "normal mode" coordinates, in which the motion in one mode is independent of the 

motion in the other modes.  Then we can apply the equations as above.
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Action and emittance

The action Jx is a variable used to describe the amplitude of the motion of an 

individual particle.  In terms of the action-angle variables, the Cartesian 

coordinate and momentum can be written:

The emittance ex is the average amplitude of all particles in a bunch:

With this relationship between the emittance and the average action, we can 

obtain the following familiar relationships for the second-order moments of 

the bunch:

Again, this is true for uncoupled motion.
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Action and radiation

So far, we have considered only symplectic transport, i.e. motion of a 

particle in the electromagnetic fields of drifts, dipoles, quadrupoles etc. 

without any radiation.

However, we know that a charged particle moving through an 

electromagnetic field will (in general) undergo acceleration, and a charged 

particle undergoing acceleration will radiate electromagnetic waves.

What impact will the radiation have on the motion of the particle?

In answering this question, we will consider first the case of uncoupled 

vertical motion – for a particle in a storage ring, this turns out to be the 

simplest case.
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Radiation damping of vertical emittance

A relativistic particle will emit radiation with an opening angle of 1/ with 

respect to its instantaneous direction of motion, where  is the relativistic 

factor.

For an ultra-relativistic particle,  >> 1, we can assume that the radiation is 

emitted directly along the instantaneous direction of motion of the particle.
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Radiation damping of vertical emittance

The change in momentum of the particle is given by:

where dp is the momentum carried by the radiation, and we assume that:

Since there is no change in direction of the particle, we must have:
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Radiation damping of vertical emittance

After emission of radiation, the vertical momentum of the particle is:

Now we substitute this into the expression for the vertical betatron action 

(valid for uncoupled motion):

to find the change in the action resulting from the emission of radiation:

We average over all particles in the beam, to find:

where we have used:
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Radiation damping of vertical emittance

For a particle moving round a storage ring, we can integrate the loss in 

momentum around the ring. The emittance is conserved under symplectic 

transport; so if the non-symplectic (radiation) effects are slow, we can write:

where T0 is the revolution period, and U0 is the energy loss in one turn.  The 

approximation is valid for an ultra-relativistic particle, which has E  pc.

We define the damping time y:

so the evolution of the emittance is:

Typically, the damping time in a synchrotron storage ring is measured in tens of 

milliseconds, whereas the revolution period is measured in microseconds; so the 

radiation effects really are "slow".
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Radiation damping of vertical emittance

Note that we made the assumption that the momentum of the particle was 

close to the reference momentum:

If the particle continues to radiate without any restoration of energy, we will 

reach a point where this assumption is no longer valid.  However, electron 

storage rings contain RF cavities to restore the energy lost by synchrotron 

radiation.  But then, we have to consider the change in momentum of a 

particle as it moves through an RF cavity.

Fortunately, RF cavities are usually designed with a longitudinal electric 

field, so that particles experience a change in longitudinal momentum as 

they pass through, without any change in transverse momentum.

0Pp 

RF cavity
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Synchrotron radiation energy loss

To complete our calculation of the vertical damping time, we need to find the 

energy lost by a particle through synchrotron radiation on each turn through 

the storage ring.  We quote the (classical) result that the power radiated by a 

particle of charge e and energy E in a magnetic field B is given by:

C is a constant, given by:

A charged particle with energy E in a magnetic field B follows a circular 

trajectory with radius , given by:

Hence the synchrotron radiation power can be written:
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Synchrotron radiation energy loss

For a particle with the nominal energy, and traveling at (close to) the speed 

of light around the closed orbit, we can find the energy loss simply by 

integrating the radiation power around the ring:

Using the previous expression for P, we find:

Conventionally, we define the second synchrotron radiation integral, I2:

In terms of I2, the energy loss per turn U0 is written:
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A short digression: the first synchrotron radiation integral

Note that I2 is a property of the lattice (actually, of the reference trajectory), 

and does not depend on the properties of the beam.

Conventionally, there are five synchrotron radiation integrals defined, which 

are used to express in convenient form the dynamics of a beam emitting 

radiation.

The first synchrotron radiation integral is not, however, directly related to the 

radiation effects.  It is defined as:

where hx is the horizontal dispersion.

The momentum compaction factor, p, can be written:
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Damping of horizontal emittance

Analysis of the radiation effects on the vertical emittance was relatively 

straightforward.  When we consider the horizontal emittance, there are three 

complications that we need to address:

– The horizontal motion of a particle is often strongly coupled to the 

longitudinal motion.

– Where the reference trajectory is curved (usually, in dipoles), the path 

length taken by a particle depends on the horizontal coordinate with 

respect to the reference trajectory.

– Dipole magnets are sometimes built with a gradient, so that the 

vertical field seen by a particle in a dipole depends on the horizontal 

coordinate of the particle.
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Horizontal-longitudinal coupling

Coupling between transverse and longitudinal planes in a beam line is 

usually represented by the dispersion, hx.  So, in terms of the horizontal 

dispersion, the horizontal coordinate and momentum of a particle are given 

by:

When a particle emits radiation, we have to take into account:

– the change in momentum of the particle (because of the momentum 

carried by the radiation);

– the change in coordinate x and momentum px resulting from the 

change in energy deviation d.

When we analysed the vertical motion, we ignored the second effect, 

because we assumed that the vertical dispersion was zero.
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Damping of horizontal emittance

Taking all the above effects into account, we can proceed along the same 

lines as for the analysis of the vertical emittance.  That is:

• Write down the changes in coordinate x and momentum px resulting 

from an emission of radiation with momentum dp (taking into account 

the additional effects of dispersion).

• Substitute expressions for the new coordinate and momentum into the 

expression for the horizontal betatron action, to find the change in 

action resulting from the radiation emission.

• Average over all particles in the beam, to find the change in the 

emittance resulting from radiation emission from each particle.

• Integrate around the ring (taking account of changes in path length 

and field strength with x in the bends) to find the change in emittance 

over one turn.

The algebra gets somewhat cumbersome, and is not especially 

enlightening: see Appendix A for more details.  Here, we just quote the 

result…
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Damping of horizontal emittance

The horizontal emittance decays exponentially:

where the horizontal damping time is given by:

The horizontal damping partition number jx is given by:

where the fourth synchrotron radiation integral I4 is given by:
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Damping of synchrotron oscillations

So far, we have considered the effects of synchrotron radiation on the 

transverse motion.  There are also effects on the longitudinal motion.

Generally, synchrotron oscillations are handled differently from betatron 

oscillations, because the synchrotron tune in a storage ring is usually much 

less than 1, whereas the betatron tunes are much greater than 1.

To find the effects of radiation on synchrotron motion, we proceed as 

follows:

– We write down the equations of motion (for the variables z and d) for a 

particle performing synchrotron motion, including the radiation energy 

loss.

– We express the energy loss per turn as a function of the energy 

deviation of the particle.  This introduces a "damping term" into the 

equations of motion.

– Solving the equations of motion gives synchrotron oscillations (as 

expected) with amplitude that decays exponentially.
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Damping of synchrotron oscillations

The change in energy deviation d and longitudinal coordinate z for a particle 

in one turn around a storage ring are given by:

where VRF is the RF voltage and RF the RF frequency, E0 is the reference 

energy of the beam, s is the nominal RF phase, and U is the energy lost by 

the particle through synchrotron radiation.

If the revolution period is T0, then we can write the longitudinal equations of 

motion for the particle:
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Damping of synchrotron oscillations

Let us assume that z is small compared to the RF wavelength, i.e. RFz/c << 1.

Also, the energy loss per turn is a function of the energy of the particle 

(particles with higher energy radiate higher synchrotron radiation power), so 

we can write (to first order in the energy deviation):

Further, we assume that the RF phase s is set so that for z = d = 0, the RF 

cavity restores exactly the amount of energy lost by synchrotron radiation.  

The equations of motion then become:

00

000

EEEE dE

dU
EU

dE

dU
EUU



 d

d

d



d

c
dt

dz

dE

dU

T
z

cTE

eV

dt

d

p

EE

RF
s

RF




 0000

1
cos



31 Lecture 1: Dynamics with Synchrotron RadiationLow Emittance Machines

Damping of synchrotron oscillations

Combining these equations gives:

This is the equation for a damped harmonic oscillator, with frequency s and 

damping constant E given by:
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Damping of synchrotron oscillations

If E << s, the energy deviation and longitudinal coordinate damp as:

To find the damping constant E, we need to know how the energy loss per 

turn U depends on the energy deviation d…
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Damping of synchrotron oscillations

We can find the total energy lost by integrating over one revolution period:

To convert this to an integral over the circumference, we should recall that 

the path length depends on the energy deviation; so a particle with a higher 

energy takes longer to travel round the lattice.

dtPU   

dsds
x

dC x  1 1 




















dh



c

dC
dt 

dsP
c

U x  1
1
 












dh




34 Lecture 1: Dynamics with Synchrotron RadiationLow Emittance Machines

Damping of synchrotron oscillations

With the energy loss per turn given by:

and the synchrotron radiation power given by:

we find, after some algebra:

where:

I2 and I4 are the same synchrotron radiation integrals that we saw before:
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Damping of synchrotron oscillations

Finally, we can write the longitudinal damping time:

U0 is the energy loss per turn for a particle with the reference energy E0, 

following the reference trajectory.  It is given by:

jz is the longitudinal damping partition number, given by:
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Damping of synchrotron oscillations

The longitudinal emittance is given by a similar expression to the horizontal 

and vertical emittances:

In most storage rings, the correlation zd is negligible, so the emittance 

becomes:

Hence, the damping of the longitudinal emittance can be written:
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Summary: synchrotron radiation damping

The energy loss per turn is given by:

The radiation damping times are given by:

The damping partition numbers are:

The second and fourth synchrotron radiation integrals are:
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Quantum excitation

If radiation were a purely classical process, the emittances would damp to 

nearly zero.  However radiation is emitted in discrete units (photons), which 

induces some “noise” on the beam.  The effect of the noise is to increase 

the emittance.  The beam eventually reaches an equilibrium determined by 

a balance between the radiation damping and the quantum excitation.

particle

trajectory

on-energy closed orbit

emitted

photon

bending

magnet
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Quantum excitation of horizontal emittance

By considering the change in the phase-space variables when a particle 

emits radiation carrying momentum dp, we find that the associated change 

in the betatron action is:

where w1 and w2 are functions of the Twiss parameters, the dispersion, and 

the phase-space variables (see Appendix A).

The time evolution of the action can then be written:

In the classical approximation, we can take dp  0 in the limit of small time 

interval, dt  0.  In this approximation, the second term on the right hand 

side in the above equation vanishes, and we are left only with damping.  But 

since radiation is quantized, it makes no real sense to take dp  0…
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Quantum excitation of horizontal emittance

To take account of the quantization of synchrotron radiation, we write the 

time-evolution of the action as:

where u is the photon energy, and    is the number of photons emitted per 

unit time.

In Appendix B, we show that this leads to the equation for the evolution of 

the emittance, including both radiation damping and quantum excitation:

where the fifth synchrotron radiation integral I5 is given by:

and the "quantum constant" Cq is given by: 
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Quantum excitation of horizontal emittance

The equilibrium horizontal emittance is found from:

The equilibrium horizontal emittance is given by:

Note that e0 is determined by the beam energy, the lattice functions (Twiss 

parameters and dispersion) in the dipoles, and the bending radius in the 

dipoles.

e0 is sometimes called the “natural emittance” of the lattice, since it is the 

horizontal emittance that will be achieved in the limit of zero bunch charge: 

as the current is increased, interactions betweens particles in a bunch can 

increase the emittance above the equilibrium determined by radiation 

effects.
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Quantum excitation of vertical emittance

In many storage rings, the vertical dispersion in the absence of alignment, 
steering and coupling errors is zero, so Hy = 0.  However, the equilibrium 

vertical emittance is larger than zero, because the vertical opening angle of 

the radiation excites some vertical betatron oscillations.

The fundamental lower limit on the vertical emittance, from the opening 

angle of the synchrotron radiation, is given by(1):

In most storage rings, this is an extremely small value, typically four orders 

of magnitude smaller than the natural (horizontal) emittance.

In practice, the vertical emittance is dominated by magnet alignment errors.  

Storage rings typically operate with a vertical emittance that is of order 1% 

of the horizontal emittance, but many can achieve emittance ratios 

somewhat smaller than this.

(1) T. Raubenheimer, SLAC Report 387, p.19 (1991).
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Quantum excitation of synchrotron oscillations

Quantum effects excite longitudinal emittance as well as transverse 

emittance.  Consider a particle with longitudinal coordinate z and energy 

deviation d, which emits a photon of energy u.

Averaging over the bunch gives:
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Quantum excitation of synchrotron oscillations

Including the effects of radiation damping, the evolution of the energy 

spread is:

Using equation (B3) from Appendix B for u2, we find:

We find the equilibrium energy spread from dd
2/dt = 0:

The third synchrotron radiation integral I3 is given by:
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Natural energy spread

The equilibrium energy spread determined by radiation effects is:

This is often referred to as the “natural” energy spread, since collective 

effects can often lead to an increase in the energy spread with increasing 

bunch charge.

The natural energy spread is determined essentially by the beam energy 

and by the bending radii of the dipoles.  Note that the natural energy spread 

does not depend on the RF parameters (either voltage or frequency).

The corresponding equilibrium bunch length is:

We can increase the synchrotron frequency s, and hence reduce the bunch 

length, by increasing the RF voltage, or by increasing the RF frequency.
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Summary: radiation damping

Including the effects of radiation damping and quantum excitation, the 

emittances vary as:

The damping times are given by:

The damping partition numbers are given by:

The energy loss per turn is given by:
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Summary: equilibrium beam sizes

The natural emittance is:

The natural energy spread and bunch length are given by:

The momentum compaction factor is:

The synchrotron frequency and synchronous phase are given by:
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Summary: synchrotron radiation integrals

The synchrotron radiation integrals are:
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Appendix A: Damping of horizontal emittance

In this Appendix, we derive the expression for radiation damping of the 

horizontal emittance:

where:

To do this, we proceed as follows:

1. We find an expression for the change of horizontal action of a single 

particle when emitting radiation with momentum dp.

2. We integrate around the ring to find the change in action per 

revolution period.

3. We average the action over all particles in the bunch, to find the 

change in emittance per revolution period.
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Appendix A: Damping of horizontal emittance

To begin, we note that, in the presence of dispersion, the action Jx is written:

where:

After emission of radiation carrying momentum dp, the variables change by:

The resulting change in the action is:
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Appendix A: Damping of horizontal emittance

The change in the horizontal action is:

(A1)

where, in the limit d  0:

(A2)

and:

(A3)

Treating radiation as a classical phenomenon, we can take the limit dp  0

in the limit of small time interval, dt  0.  In this approximation:

where P is the rate of energy loss of the particle through radiation.
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Appendix A: Damping of horizontal emittance

To find the average rate of change of horizontal action, we integrate over 

one revolution period:

We have to be careful changing the variable of

integration where the reference trajectory is curved:

So:

where the rate of energy loss is:
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Appendix A: Damping of horizontal emittance

We have to take into account the fact that the field strength in a dipole can 

vary with position.  To first order in x we can write:

Substituting equation (A6) into (A5), and with the use of (A2), we find (after 

some algebra!) that, averaging over all particles in the beam:

where:

and k1 is the quadrupole gradient in the dipole field:
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Appendix A: Damping of horizontal emittance

Combining equations (A4) and (A7) we have:

Defining the horizontal damping time, x:

the evolution of the horizontal emittance can be written:

The quantity jx is called the horizontal damping partition number.  For most 

lattices, if there is no gradient in the dipoles, then jx is very close to 1.
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Appendix B: Quantum excitation of horizontal emittance

In deriving the equation of motion (A4) for the action of a particle emitting 

synchrotron radiation, we made the classical approximation that in a time 

interval dt, the momentum of the radiation emitted dp goes to zero as dt goes 

to zero.

In reality, emission of radiation is quantized, so writing "dp  0" actually 

makes no sense.

Taking into account the quantization of radiation, the equation of motion for 

the action (A1) should be written:

(B1)

where     is the number of photons emitted per unit time.

The first term on the right hand side of (B1) just gives the same radiation 

damping as in the classical approximation.  The second term on the right 

hand side of (B1) is an excitation term that we previously neglected…

22

0

2

2

0

1

2

0

2

0

1
cP

u
Nw

cP

u
Nw

dt

dJ

P

dp
w

P

dp
wdJ x

x
 












N
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Appendix B: Quantum excitation of horizontal emittance

Averaging around the circumference of the ring, the quantum excitation term 

can be written:

Using equation (A3) for w2, we find that (for x << hx and px << hpx) the 

excitation term can be written:

where the "curly-H" function Hx is given by:
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Appendix B: Quantum excitation of horizontal emittance

Including both (classical) damping and (quantum) excitation terms, and 

averaging over all particles in the bunch, we find that the horizontal 

emittance evolves as:

(B2)

We quote the result (from quantum radiation theory):

(B3)

where the “quantum constant” Cq is:
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Appendix B: Quantum excitation of horizontal emittance

Using equation (B3), and equation (A5) for P, and the results:

we find that equation (B2) for the evolution of the emittance can be written:

where the fifth synchrotron radiation integral I5 is given by:

Note that the excitation term is independent of the emittance: it does not 

simply modify the damping time, but leads to a non-zero equilibrium 

emittance.
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